点突变
点(几何)
抗性(生态学)
酶
计算机科学
人工智能
化学
生物化学
计算生物学
突变
生物
数学
基因
生态学
几何学
作者
Sizhe Qiu,Yishun Lu,Nan‐Kai Wang,Jin-Song Gong,Jin‐Song Shi,Aidong Yang
标识
DOI:10.1101/2024.11.16.623957
摘要
Abstract An accurate deep learning predictor of enzyme optimal pH is essential to quantitatively describe how pH influences the enzyme catalytic activity. CatOpt, developed in this study, outperformed existing predictors of enzyme optimal pH (RMSE=0.833 and R2=0.479), and could provide good interpretability with informative residue attention weights. The classification of acidic and alkaline enzymes and prediction of enzyme optimal pH shifts caused by point mutations showcased the capability of CatOpt as an effective computational tool for identifying enzyme pH preferences. Furthermore, a single point mutation designed with the guidance of CatOpt successfully enhanced the activity of Pyrococcus horikoshii diacetylchitobiose deacetylase at low pH (pH=4.5/5.5) by approximately 7%, suggesting that CatOpt is a promising in-silico enzyme design tool for pH-dependent enzyme activities. Graphical abstract
科研通智能强力驱动
Strongly Powered by AbleSci AI