A systematic review on deep learning architectures and applications

计算机科学 深度学习 人工智能 人气 机器学习 数据科学 领域(数学分析) 卷积神经网络 范围(计算机科学) 建筑 数学 程序设计语言 艺术 视觉艺术 心理学 社会心理学 数学分析
作者
Aditya Khamparia,Karan Mehtab Singh
出处
期刊:Expert Systems [Wiley]
卷期号:36 (3) 被引量:120
标识
DOI:10.1111/exsy.12400
摘要

Abstract The amount of digital data in the universe is growing at an exponential rate, doubling every 2 years, and changing how we live in the world. The information storage capacity and data requirement crossed the zettabytes. With this level of bombardment of data on machine learning techniques, it becomes very difficult to carry out parallel computations. Deep learning is broadening its scope and gaining more popularity in natural language processing, feature extraction and visualization, and almost in every machine learning trend. The purpose of this study is to provide a brief review of deep learning architectures and their working. Research papers and proceedings of conferences from various authentic resources ( Institute of Electrical and Electronics Engineers , Wiley , Nature , and Elsevier ) are studied and analyzed. Different architectures and their effectiveness to solve domain specific problems are evaluated. Various limitations and open problems of current architectures are discussed to provide better insights to help researchers and student to resume their research on these issues. One hundred one articles were reviewed for this meta‐analysis of deep learning. From this analysis, it is concluded that advanced deep learning architectures are combinations of few conventional architectures. For example, deep belief network and convolutional neural network are used to build convolutional deep belief network, which has higher capabilities than the parent architectures. These combined architectures are more robust to explore the problem space and thus can be the answer to build a general‐purpose architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助韩豆乐采纳,获得10
1秒前
2秒前
2秒前
3秒前
tt发布了新的文献求助10
3秒前
天真的枕头完成签到,获得积分10
3秒前
绿色之梦完成签到 ,获得积分10
4秒前
完美世界应助夏目采纳,获得10
4秒前
5秒前
zt完成签到,获得积分10
6秒前
汉堡包应助宇文宛菡采纳,获得10
6秒前
liu1900ab发布了新的文献求助10
8秒前
小杨完成签到,获得积分20
8秒前
zzz发布了新的文献求助10
8秒前
9秒前
10秒前
liliuuuuuuuu发布了新的文献求助10
10秒前
丘比特应助麻瓜采纳,获得10
11秒前
11秒前
Jasper应助wb采纳,获得10
11秒前
yang完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
万能图书馆应助Circle采纳,获得10
15秒前
17秒前
Ava应助Blve采纳,获得10
18秒前
脑洞疼应助宇文宛菡采纳,获得10
18秒前
18秒前
20秒前
Roseanne发布了新的文献求助10
20秒前
和谐石头完成签到,获得积分10
20秒前
韩豆乐发布了新的文献求助10
21秒前
21秒前
直率的宛海完成签到,获得积分10
22秒前
tt完成签到,获得积分10
23秒前
月流瓦发布了新的文献求助20
24秒前
科研通AI2S应助Rae采纳,获得10
25秒前
Chen发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602648
求助须知:如何正确求助?哪些是违规求助? 4687718
关于积分的说明 14850857
捐赠科研通 4684814
什么是DOI,文献DOI怎么找? 2539992
邀请新用户注册赠送积分活动 1506766
关于科研通互助平台的介绍 1471445