磷酸二酯键
生物
核苷酸
背景(考古学)
DNA
亲脂性
劈理(地质)
碱基
胞质分裂
基因沉默
生物化学
立体化学
小干扰RNA
体外
基因
终端(电信)
化学合成
组合化学
核糖核酸
细胞生物学
核酸
核酸酶
生物物理学
转移RNA
化学改性
螺旋(腹足类)
连接器
序列(生物学)
分子生物学
转染
劈开
抄写(语言学)
计算生物学
基因表达调控
作者
Daniel O’Reilly,Raymond Furgal,Vella M Ross,Eric Luu,Katherine Y. Gross,Vignesh Hariharan,Ashley Summers,David Cooper,Sarah Allen,Christopher D Dahlke,Mohamad Omar Rachid,Io Long Chan,Hassan H Fakih,Julia F. Alterman,Dimas Echeverria,J. Watts,Anastasia Khvorova
摘要
Abstract Short interfering RNAs (siRNAs) represent a novel class of therapeutic modalities, where, in the context of complex chemical modification patterns, a single administration can support sustained gene silencing. Various siRNA architectures demonstrate robust activity; however, a guide strand length of 19–21 nucleotides is generally believed to be required for effective gene silencing. Here, we show that up to five terminal positions of the guide strand can be efficiently substituted with non-nucleobase-containing analogs without a measurable loss of activity in vitro or in vivo. While nucleobases are not essential at these positions, the presence of a phosphodiester backbone is critical. Both the distance between phosphate groups and the lipophilicity of the phosphodiester-linking analogs significantly influence silencing activity. Longer carbon-based chains reduce activity, whereas ethylene glycol-based chains preserve activity, highlighting the importance of backbone architecture in RISC engagement. These findings demonstrate that non-nucleobase structures can support productive RISC interactions, offering new opportunities in the chemical engineering of therapeutic siRNAs and other classes of small-RNA drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI