点云
推论
计算机科学
参数统计
GSM演进的增强数据速率
人工智能
网(多面体)
深度学习
点(几何)
特征(语言学)
参数化模型
数据挖掘
人工神经网络
模式识别(心理学)
算法
数学
几何学
统计
语言学
哲学
作者
Xiaogang Wang,Yuelang Xu,Kai Xu,Andrea Tagliasacchi,Bin Zhou,Ali Mahdavi‐Amiri,Hao Zhang
出处
期刊:Cornell University - arXiv
日期:2020-07-09
被引量:43
标识
DOI:10.48550/arxiv.2007.04883
摘要
We introduce an end-to-end learnable technique to robustly identify feature edges in 3D point cloud data. We represent these edges as a collection of parametric curves (i.e.,lines, circles, and B-splines). Accordingly, our deep neural network, coined PIE-NET, is trained for parametric inference of edges. The network relies on a "region proposal" architecture, where a first module proposes an over-complete collection of edge and corner points, and a second module ranks each proposal to decide whether it should be considered. We train and evaluate our method on the ABC dataset, a large dataset of CAD models, and compare our results to those produced by traditional (non-learning) processing pipelines, as well as a recent deep learning based edge detector (EC-NET). Our results significantly improve over the state-of-the-art from both a quantitative and qualitative standpoint.
科研通智能强力驱动
Strongly Powered by AbleSci AI