雅可比矩阵与行列式
运动学
工作区
笛卡尔坐标系
运动学图
机制(生物学)
反向动力学
望远镜
斯图尔特站台
螺旋理论
约束(计算机辅助设计)
机器人运动学
方向(向量空间)
计算机科学
职位(财务)
控制理论(社会学)
自由度(物理和化学)
并联机械手
物理
数学
几何学
运动链
经典力学
人工智能
机器人
应用数学
光学
财务
量子力学
控制(管理)
经济
移动机器人
作者
Juan C. Carretero,Meyer Nahon,Bradley J. Buckham,Clément Gosselin
出处
期刊:Design Automation Conference
日期:1997-09-14
被引量:22
标识
DOI:10.1115/detc97/dac-3981
摘要
Abstract This paper presents a kinematic analysis of a three-degree-of-freedom parallel mechanism intended for use as a telescope mirror focussing device. The construction of the mechanism is first described and its forward and inverse kinematics solutions are derived. Because the mechanism has only three degrees of freedom, constraint equations must be generated to describe the inter-relationship between the six Cartesian coordinates which describe the position and orientation of the moving platform. Once these constraints are incorporated into the kinematics model, a constrained Jacobian matrix is obtained. The stiffness and dexterity properties of the mechanism are then determined based on this Jacobian matrix. The mechanism is shown to exhibit desirable properties in the region of its workspace of interest in the telescope focussing application.
科研通智能强力驱动
Strongly Powered by AbleSci AI