Dynamic Inverse Design of Broadband Metasurfaces with Synthetical Neural Networks

计算机科学 人工神经网络 宽带 灵活性(工程) 人工智能 电信 数学 统计
作者
Yuetian Jia,Zhixiang Fan,Chao Qian,Philipp del Hougne,Hongsheng Chen
出处
期刊:Laser & Photonics Reviews [Wiley]
卷期号:18 (10) 被引量:6
标识
DOI:10.1002/lpor.202400063
摘要

Abstract For over 35 years of research, the debate about the systematic compositionality of neural networks remains unchanged, arguing that existing artificial neural networks are inadequate cognitive models. Recent advancements in deep learning have significantly shaped the landscape of popular domains, however, the systematic combination of previously trained neural networks remains an open challenge. This study presents how to dynamically synthesize a neural network for the design of broadband electromagnetic metasurfaces. The underlying mechanism relies on an assembly network to adaptively integrate pre‐trained inherited networks in a transparent manner that corresponds to the metasurface assembly in physical space. This framework is poised to curtail data requirements and augment network flexibility, promising heightened practical utility in complex composition‐based tasks. Importantly, the intricate coupling effects between different metasurface segments are accurately captured. The approach for two broadband metasurface inverse design problems is exemplified, reaching accuracies of 96.7% and 95.5%. Along the way, the importance of suitably formatting the spectral data is highlighted to capture sharp spectral features. This study marks a significant leap forward in inheriting pre‐existing knowledge in neural‐network‐based inverse design, improving its adaptability for applications involving dynamically evolving tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助10
刚刚
思源应助蜗牛撵大象采纳,获得10
刚刚
twwm发布了新的文献求助10
1秒前
研友_Z6k7B8发布了新的文献求助10
1秒前
1秒前
2秒前
xpf发布了新的文献求助10
2秒前
sube完成签到,获得积分10
4秒前
dingshukai1234完成签到,获得积分20
7秒前
9秒前
NexusExplorer应助HPP123采纳,获得10
12秒前
桐桐完成签到,获得积分0
13秒前
14秒前
16秒前
啊盘发布了新的文献求助10
16秒前
专一的白萱完成签到 ,获得积分10
16秒前
爱吃绿豆沙的热辣小妈完成签到 ,获得积分10
17秒前
小蘑菇应助霸气导师采纳,获得10
19秒前
研友_Z6k7B8完成签到,获得积分10
19秒前
zgt01发布了新的文献求助10
20秒前
图图应助风中的丝袜采纳,获得10
20秒前
20秒前
只A不B应助风中的丝袜采纳,获得30
21秒前
上官若男应助traveller采纳,获得10
21秒前
褐瞳关注了科研通微信公众号
22秒前
23秒前
Jerry聪完成签到,获得积分10
27秒前
27秒前
xpf完成签到 ,获得积分20
32秒前
zgt01完成签到,获得积分10
32秒前
砍柴少年发布了新的文献求助10
33秒前
想睡觉的小笼包完成签到 ,获得积分10
33秒前
上官若男应助无脚鸟采纳,获得10
33秒前
36秒前
38秒前
北城发布了新的文献求助10
40秒前
小马甲应助砍柴少年采纳,获得10
40秒前
科研通AI2S应助风中的丝袜采纳,获得10
41秒前
小二郎应助风中的丝袜采纳,获得10
41秒前
NexusExplorer应助风中的丝袜采纳,获得30
41秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307