Tree Branch Characterisation from Point Clouds: a Comprehensive Review

点云 领域(数学) 数据科学 计算机科学 领域(数学分析) 遥感 树(集合论) 钥匙(锁) 激光扫描 系统工程 地理 人工智能 工程类 激光器 数学 数学分析 物理 计算机安全 纯数学 光学
作者
Robin J. L. Hartley,Sadeepa Jayathunga,Justin Morgenroth,Grant D. Pearse
出处
期刊:Current forestry reports [Springer Science+Business Media]
卷期号:10 (5): 360-385
标识
DOI:10.1007/s40725-024-00225-5
摘要

Abstract Purpose of Review Since the late 1990s, researchers have been increasingly utilising digital methodologies to assess the branch structure of trees. The emergence of commercial terrestrial laser scanners during this period catalysed an entirely new domain focused on point cloud-based research. Over the years, this field has transformed from a complex computational discipline into a practical tool that effectively supports research endeavours. Through the combined use of non-destructive remote sensing techniques and advanced analytical methods, branch characterisation can now be carried out at an unprecedented level. Recent Findings While terrestrial laser scanning has traditionally been the dominant methodology for this research domain, the increased use of mobile laser scanners and unmanned aerial vehicles indicates a transition towards more mobile platforms. Quantitative structural modelling (QSM) has been pivotal in advancing this field, enhancing branch characterisation capabilities across diverse fields. The past five years have seen increased uptake of 2D and 3D deep learning techniques as alternatives. Summary This article presents a comprehensive synthesis of approximately 25 years of research in the field of digital branch characterisation, reviewing the data capture technologies and analytical methods, along with the forest types and tree species to which these technologies have been applied. It explores the current trends in this dynamic field of research, research gaps and some of the key challenges that remain within this field. In this review, we placed particular emphasis on the potential resolution of the significant challenge associated with occlusion through the utilisation of mobile technologies, such as mobile laser scanners and unmanned aerial vehicles. We highlight the need for a more cohesive method for assessing point cloud quality and derived structural model accuracy, and benchmarking data sets that can be used to test new and existing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每天都好困完成签到,获得积分10
刚刚
pian完成签到,获得积分10
5秒前
怡然的山柳完成签到,获得积分10
5秒前
打打应助纯金金采纳,获得10
6秒前
6秒前
深情安青应助小综的fan儿采纳,获得10
7秒前
7秒前
迷路易形完成签到,获得积分10
7秒前
大模型应助筱煜采纳,获得10
8秒前
念头完成签到,获得积分20
8秒前
打工仔完成签到 ,获得积分10
9秒前
9秒前
笨笨芯应助茶包采纳,获得10
11秒前
陈东东完成签到,获得积分10
12秒前
Manfred完成签到,获得积分10
14秒前
Huaaaaaz发布了新的文献求助10
15秒前
小蘑菇应助FD采纳,获得10
16秒前
16秒前
经方中医周博士关注了科研通微信公众号
18秒前
18秒前
三木完成签到,获得积分10
19秒前
四十发布了新的文献求助10
19秒前
小朱完成签到 ,获得积分10
20秒前
20秒前
是否跨凤乘龙完成签到,获得积分10
20秒前
20秒前
慕青应助卢飞薇采纳,获得30
21秒前
22秒前
23秒前
23秒前
汉堡包应助优雅的听兰采纳,获得30
24秒前
tangchao完成签到,获得积分10
24秒前
lumi完成签到,获得积分20
26秒前
丘比特应助琦琦采纳,获得10
27秒前
芥楠完成签到,获得积分10
27秒前
纯金金发布了新的文献求助10
27秒前
KK发布了新的文献求助10
28秒前
28秒前
Huaaaaaz完成签到,获得积分20
29秒前
LIJINGGE发布了新的文献求助10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812524
求助须知:如何正确求助?哪些是违规求助? 3357072
关于积分的说明 10385087
捐赠科研通 3074263
什么是DOI,文献DOI怎么找? 1688684
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986