Extracting lung cancer staging descriptors from pathology reports: A generative language model approach

计算机科学 肺癌 人工智能 自然语言处理 病理 生成模型 生成语法 医学
作者
Hyeongmin Cho,Sooyoung Yoo,Borham Kim,Sowon Jang,Leonard Sunwoo,Sang‐Hwan Kim,Donghyoung Lee,Seok Kim,Sejin Nam,Jin‐Haeng Chung
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:157: 104720-104720 被引量:5
标识
DOI:10.1016/j.jbi.2024.104720
摘要

In oncology, electronic health records contain textual key information for the diagnosis, staging, and treatment planning of patients with cancer. However, text data processing requires a lot of time and effort, which limits the utilization of these data. Recent advances in natural language processing (NLP) technology, including large language models, can be applied to cancer research. Particularly, extracting the information required for the pathological stage from surgical pathology reports can be utilized to update cancer staging according to the latest cancer staging guidelines. This study has two main objectives. The first objective is to evaluate the performance of extracting information from text-based surgical pathology reports and determining pathological stages based on the extracted information using fine-tuned generative language models (GLMs) for patients with lung cancer. The second objective is to determine the feasibility of utilizing relatively small GLMs for information extraction in a resource-constrained computing environment. Lung cancer surgical pathology reports were collected from the Common Data Model database of Seoul National University Bundang Hospital (SNUBH), a tertiary hospital in Korea. We selected 42 descriptors necessary for tumor-node (TN) classification based on these reports and created a gold standard with validation by two clinical experts. The pathology reports and gold standard were used to generate prompt-response pairs for training and evaluating GLMs which then were used to extract information required for staging from pathology reports. We evaluated the information extraction performance of six trained models as well as their performance in TN classification using the extracted information. The Deductive Mistral-7B model, which was pre-trained with the deductive dataset, showed the best performance overall, with an exact match ratio of 92.24% in the information extraction problem and an accuracy of 0.9876 (predicting T and N classification concurrently) in classification. This study demonstrated that training GLMs with deductive datasets can improve information extraction performance, and GLMs with a relatively small number of parameters at approximately seven billion can achieve high performance in this problem. The proposed GLM-based information extraction method is expected to be useful in clinical decision-making support, lung cancer staging and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XM发布了新的文献求助10
刚刚
Orange应助angew2000采纳,获得10
1秒前
波鲁鲁爱喝酸奶应助呆萌采纳,获得10
1秒前
龙猫完成签到,获得积分10
1秒前
ding应助愉快枫叶采纳,获得10
1秒前
社会主义完成签到,获得积分20
1秒前
FCL完成签到,获得积分10
2秒前
悠木完成签到 ,获得积分10
2秒前
斯文败类应助mengdewen采纳,获得10
3秒前
4秒前
兴奋电脑完成签到,获得积分10
5秒前
勤劳不弱完成签到,获得积分10
6秒前
mycoplasma完成签到 ,获得积分20
7秒前
科研通AI5应助XM采纳,获得10
8秒前
ww发布了新的文献求助10
8秒前
小花排草应助hbc采纳,获得30
9秒前
追寻柚子完成签到,获得积分10
9秒前
後zgw发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
强健的飞瑶应助凌志采纳,获得30
11秒前
dongdadada完成签到,获得积分10
13秒前
英姑应助ivying0209采纳,获得10
13秒前
科研通AI2S应助秋天的童话采纳,获得10
13秒前
14秒前
lailai发布了新的文献求助10
16秒前
幸运星完成签到,获得积分10
16秒前
16秒前
爱吃粑粑发布了新的文献求助10
16秒前
amanda发布了新的文献求助10
17秒前
酷波er应助weilan采纳,获得10
17秒前
17秒前
17秒前
17秒前
谨慎的草丛完成签到,获得积分10
17秒前
社会主义发布了新的文献求助10
18秒前
花莫凋零发布了新的文献求助10
20秒前
wanci发布了新的文献求助10
21秒前
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4186768
求助须知:如何正确求助?哪些是违规求助? 3722634
关于积分的说明 11729967
捐赠科研通 3400520
什么是DOI,文献DOI怎么找? 1865968
邀请新用户注册赠送积分活动 922895
科研通“疑难数据库(出版商)”最低求助积分说明 834276