Risk communication, respiratory health risks, and air pollution forecasting in the city of Rio de Janeiro, Brazil

作者
Kevin Park,Kevin Cromar,Gina Gonzales,Laura Gladson,Felipe Cerbella Mandarino,Lúcia Santos,Bruno Bôscaro França,Noussair Lazrak,K. Emma Knowland,Katherine Emma Knowland5,6,7
出处
期刊:Jornal Brasileiro De Pneumologia [Sociedade Brasileira de Pneumologia e Tisiologia]
卷期号:51 (5): e20250168-e20250168
标识
DOI:10.36416/1806-3756/e20250168
摘要

Objective: Although communicating air pollution risks is critical for protecting public health, particularly in low- and middle-income countries (LMICs), its effectiveness remains underexplored. This study evaluated current risk communication practices in the city of Rio de Janeiro, Brazil, by assessing the associations between short-term exposure to pollutants and respiratory-related hospital admissions; the ability of the Brazilian national índice de qualidade do ar (IQAr, air quality index) to reflect health risks; and the accuracy of pollutant forecasts in comparison with monitored concentrations. Methods: Exposure and health data for the 2014-2019 period were obtained through a research partnership with local government officials. Poisson generalized linear models were employed to determine whether IQAr values and short-term exposure to air pollutants, including nitrogen dioxide (NO2) and particulate matter (PM), were associated with daily hospital admissions for respiratory disease. Bias-corrected, forecasted daily concentrations of individual air pollutants from the Goddard Earth Observing System Composition Forecast Composition Forecast (GEOS-CF) model were employed to assess the performance of existing forecasting tools for use in risk communication. Results: Significant associations were consistently observed between hospital admissions for respiratory disease and short-term exposures to NO2 and coarse PM, with excess risks of 5.1% (95% CI: 1.3-8.9%) and 5.6% (95% CI: 1.5-9.9%), respectively, per interquartile range increases in lag day 0-1 exposures. Values of IQAr were not significantly associated with respiratory health events, likely due to their failure to capture the health risks associated with NO2. Bias-corrected forecasts from the GEOS-CF model showed strong correlations with observed pollutant concentrations. Conclusions: These findings indicate that adopting a health-based, multi-pollutant index, combined with improved forecasting tools, could substantially strengthen risk communication in the city of Rio de Janeiro and other LMIC settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
回首不再是少年完成签到,获得积分0
1秒前
杰尼乾乾完成签到 ,获得积分10
1秒前
成功的强完成签到,获得积分10
5秒前
从容谷菱完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
12秒前
zhangjw完成签到 ,获得积分0
17秒前
望向天空的鱼完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
22秒前
25秒前
29秒前
STEAM发布了新的文献求助10
29秒前
又又完成签到,获得积分10
30秒前
zw发布了新的文献求助10
34秒前
无限萃完成签到,获得积分10
35秒前
笨笨忘幽完成签到,获得积分0
38秒前
zhangyuting完成签到 ,获得积分10
38秒前
livra1058完成签到,获得积分10
39秒前
WL完成签到 ,获得积分10
41秒前
spc68应助曾经的凌青采纳,获得10
44秒前
wxh完成签到 ,获得积分10
44秒前
CLTTT完成签到,获得积分0
45秒前
QP34完成签到 ,获得积分10
50秒前
gtgyh完成签到 ,获得积分10
1分钟前
boohey完成签到 ,获得积分10
1分钟前
pass完成签到 ,获得积分10
1分钟前
STEAM完成签到,获得积分10
1分钟前
daixan89完成签到 ,获得积分10
1分钟前
勤qin完成签到 ,获得积分10
1分钟前
孙老师完成签到 ,获得积分10
1分钟前
1分钟前
一枝独秀完成签到 ,获得积分10
1分钟前
白昼の月完成签到 ,获得积分0
1分钟前
阿童木完成签到 ,获得积分10
1分钟前
Akim应助曾经的凌青采纳,获得10
1分钟前
Johnson完成签到 ,获得积分10
1分钟前
丢星完成签到 ,获得积分10
1分钟前
认真的奇异果完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
2分钟前
2分钟前
学生发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724494
求助须知:如何正确求助?哪些是违规求助? 5289007
关于积分的说明 15299987
捐赠科研通 4872421
什么是DOI,文献DOI怎么找? 2616936
邀请新用户注册赠送积分活动 1566782
关于科研通互助平台的介绍 1523717