ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning

系列(地层学) 计算机科学 生物 古生物学
作者
Zhihao Xie,Zeyan Li,Xiao-Gang He,Liming Xu,Xidao Wen,Tieying Zhang,Jianjun Chen,Run Shi,Dan Pei
出处
期刊:Proceedings of the VLDB Endowment [VLDB Endowment]
卷期号:18 (8): 2385-2398 被引量:3
标识
DOI:10.14778/3742728.3742735
摘要

Understanding time series is crucial for its application in real-world scenarios. Recently, large language models (LLMs) have been increasingly applied to time series tasks, leveraging their strong language capabilities to enhance various applications. However, research on multimodal LLMs (MLLMs) for time series understanding and reasoning remains limited, primarily due to the scarcity of high-quality datasets that align time series with textual information. This paper introduces ChatTS, a novel MLLM designed for time series analysis. ChatTS treats time series as a modality, similar to how vision MLLMs process images, enabling it to perform both understanding and reasoning with time series. To address the scarcity of training data, we propose an attribute-based method for generating synthetic time series and Time Series Evol-Instruct to generates diverse Q&As for enhanced reasoning capabilities. To the best of our knowledge, ChatTS is the first MLLM that takes multivariate time series as input for understanding and reasoning, which is fine-tuned exclusively on synthetic datasets. We evaluate its performance using benchmark datasets with real-world data, including six alignment tasks and four reasoning tasks. Our results show that ChatTS significantly outperforms existing vision-based MLLMs (e.g., GPT-4o) and text/agent-based LLMs, achieving a 46.0% improvement in alignment tasks and a 25.8% improvement in reasoning tasks. We have open-sourced the source code, model checkpoint and datasets at https://github.com/NetManAIOps/ChatTS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦源发布了新的文献求助10
1秒前
1秒前
执着半凡完成签到,获得积分10
1秒前
细心的傥完成签到 ,获得积分10
2秒前
2秒前
张zi发布了新的文献求助10
2秒前
Feng完成签到,获得积分10
2秒前
某某完成签到 ,获得积分10
3秒前
伶俐的平蓝完成签到,获得积分10
3秒前
省级中药饮片完成签到 ,获得积分10
3秒前
大佬虎发布了新的文献求助10
3秒前
kk完成签到 ,获得积分10
4秒前
dancha完成签到,获得积分10
4秒前
王五完成签到,获得积分10
4秒前
张图门完成签到 ,获得积分10
5秒前
张11发布了新的文献求助10
5秒前
善良的飞鸟完成签到,获得积分10
6秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
6秒前
大胆帮帮主完成签到,获得积分10
6秒前
aa完成签到 ,获得积分10
7秒前
小明完成签到,获得积分10
7秒前
7秒前
7秒前
拉长的湘完成签到 ,获得积分10
7秒前
纳斯达克完成签到,获得积分10
7秒前
qian完成签到,获得积分10
7秒前
zh1858f发布了新的文献求助10
8秒前
所所应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得20
9秒前
BareBear应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
xu完成签到,获得积分10
9秒前
今后应助科研通管家采纳,获得10
9秒前
丰富的半蕾完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622519
求助须知:如何正确求助?哪些是违规求助? 4707989
关于积分的说明 14940965
捐赠科研通 4773498
什么是DOI,文献DOI怎么找? 2552510
邀请新用户注册赠送积分活动 1514477
关于科研通互助平台的介绍 1475183