Advancements in Ligand-Based Virtual Screening through the Synergistic Integration of Graph Neural Networks and Expert-Crafted Descriptors

虚拟筛选 计算机科学 人工智能 图形 人工神经网络 机器学习 药物发现 理论计算机科学 生物信息学 生物
作者
Yunchao Liu,Rocco Moretti,Yu Wang,Ha Dong,Bailu Yan,Bobby Bodenheimer,Tyler Derr,Jens Meiler
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00822
摘要

The fusion of traditional chemical descriptors with graph neural networks (GNNs) offers a compelling strategy for enhancing ligand-based virtual screening methodologies. A comprehensive evaluation revealed that the benefits derived from this integrative strategy vary significantly among different GNNs. Specifically, while GCN and SchNet demonstrate pronounced improvements by incorporating descriptors, SphereNet exhibits only marginal enhancement. Intriguingly, despite SphereNet's modest gain, all three models-GCN, SchNet, and SphereNet-achieve comparable performance levels when leveraging this combination strategy. This observation underscores a pivotal insight: sophisticated GNN architectures may be substituted with simpler counterparts without sacrificing efficacy, provided that they are augmented with descriptors. Furthermore, our analysis reveals a set of expert-crafted descriptors' robustness in scaffold-split scenarios, frequently outperforming the combined GNN-descriptor models. Given the critical importance of scaffold splitting in accurately mimicking real-world drug discovery contexts, this finding accentuates an imperative for GNN researchers to innovate models that can adeptly navigate and predict within such frameworks. Our work not only validates the potential of integrating descriptors with GNNs in advancing ligand-based virtual screening but also illuminates pathways for future enhancements in model development and application. Our implementation can be found at https://github.com/meilerlab/gnn-descriptor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助EasonLi采纳,获得10
刚刚
小香香发布了新的文献求助10
1秒前
左丘完成签到,获得积分10
2秒前
2秒前
科目三应助BYQ采纳,获得10
2秒前
研友_8Y26PL完成签到,获得积分10
3秒前
4秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
5秒前
wennuan0913完成签到 ,获得积分10
9秒前
元谷雪发布了新的文献求助10
10秒前
眼睛大的傲菡完成签到,获得积分10
12秒前
禅花游鱼完成签到,获得积分10
13秒前
尊敬不斜完成签到,获得积分10
13秒前
KouZL完成签到,获得积分10
14秒前
有魅力的臻完成签到,获得积分10
14秒前
共享精神应助小香香采纳,获得10
15秒前
sx发布了新的文献求助30
16秒前
17秒前
可爱的函函应助AXIANGGE采纳,获得10
17秒前
18秒前
wanci应助senta采纳,获得10
19秒前
LeePsy完成签到,获得积分10
19秒前
云fly完成签到,获得积分10
20秒前
橘猫完成签到 ,获得积分10
20秒前
21秒前
22秒前
EasonLi发布了新的文献求助10
23秒前
陈花蕾完成签到 ,获得积分10
24秒前
24秒前
26秒前
26秒前
26秒前
mm完成签到 ,获得积分10
28秒前
31秒前
sysm发布了新的文献求助20
32秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307