3D生物打印
生物人工肝装置
诱导多能干细胞
肝细胞
类有机物
干细胞
体内
组织工程
活力测定
再生(生物学)
肝星状细胞
肝衰竭
细胞
医学
癌症研究
生物
细胞生物学
生物医学工程
病理
体外
胚胎干细胞
内科学
生物化学
基因
生物技术
作者
Guangya Li,Jianyu He,Jihang Shi,Xinyi Li,Lulu Liu,Xinlan Ge,Wenhan Chen,Jun Jia,Jinlin Wang,Ming Yin,Yasuyuki Sakai,Wei Sun,Hongkui Deng,Yuan Pang
出处
期刊:Gut
[BMJ]
日期:2025-03-03
卷期号:: gutjnl-333885
被引量:1
标识
DOI:10.1136/gutjnl-2024-333885
摘要
Background To treat liver failure, three-dimensional (3D) bioprinting is a promising technology used to construct hepatic tissue models. However, current research on bioprinting of hepatic tissue models primarily relies on conventional single-cell-based bioprinting, where individual functional hepatocytes are dispersed and isolated within hydrogels, leading to insufficient treatment outcomes due to inadequate cell functionality. Objective Here, we aim to bioprint a hepatic tissue model using functional hepatocyte organoids (HOs) and evaluate its liver-specific functions in vitro and in vivo . Design Human chemically induced pluripotent stem cells (hCiPSCs) were used as a robust and non-genome-integrative cell source to produce highly viable and functional HOs (hCiPSC-HOs). An oxygen-permeable microwell device was used to enhance oxygen supply, ensuring high cell viability and promoting hCiPSC-HOs maturation. To maintain the long-term biofunction of hCiPSC-HOs, spheroid-based bioprinting was employed to construct hepatic tissue models (3DP-HOs). 3DP-HOs were intraperitoneally implanted in mice with liver failure. Results 3DP-HOs demonstrated enhanced cell viability when compared with a model fabricated using single-cell-based bioprinting and exhibited gene profiles closely resembling hCiPSC-HOs while maintaining liver-specific functionality. Moreover, 3DP-HOs implantation significantly improved survival in mice with CCl 4 -induced acute-on-chronic liver failure and also Fah−/− mice with liver failure. 3DP-HOs significantly reduced liver injury, inflammation and fibrosis indices while promoting liver regeneration and biofunction expression. Conclusion Our bioprinted hepatic tissue model exhibits remarkable therapeutic efficacy for liver failure and holds great potential for clinical research in the field of liver regenerative medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI