Predicting rice grain yield using normalized difference vegetation index from UAV and GreenSeeker

归一化差异植被指数 环境科学 农学 产量(工程) 植被指数 水稻 遥感 植被(病理学) 数学 叶面积指数 生物 地理 医学 材料科学 病理 冶金 生物化学 基因
作者
Hiroshi Nakano,Ryo Tanaka,Senlin Guan,Hideki Ohdan
出处
期刊:Crop and environment 卷期号:2 (2): 59-65 被引量:1
标识
DOI:10.1016/j.crope.2023.03.001
摘要

A precise, simple, and rapid growth diagnosis method using normalized difference vegetation index (NDVI) obtained by unmanned aerial vehicle (UAV), which will help determine nitrogen (N) application rate to increase grain yield in numerous farmers' fields, is necessary for the development of a robust production system for rice (Oryza sativa L.). In the present study, we examined the relationship between UAV-NDVI and NDVI measured with the GreenSeeker handheld crop sensor (GS-NDVI), and between grain yield and UAV-NDVI or GS-NDVI at the reproductive stage in the plant communities at 4–1 ​week (wk) before heading in 2018 and 2019 and in 2020 and 2021, respectively. In the data of each measurement day in 2018 and 2019, the relationship between UAV-NDVI and GS-NDVI was strongly positive. However, in the pooled data of different measurement days, the relationship between UAV-NDVI and GS-NDVI was weakly positive. This was because GS-NDVI was more constant under various climatic conditions and across various time of day than UAV-NDVI at the reproductive stage. Furthermore, in the pooled data of different years in 2020 and 2021, GS-NDVI correlated more strongly with grain yield than UAV-NDVI between 3 and 1 ​wk before heading. To increase the efficiency of growth diagnosis and yield prediction in the numerous farmers’ fields, UAV-NDVI could be used with correction by a few measurements of GS-NDVI determined on the same day.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助冰雪物语采纳,获得10
1秒前
所所应助清风竹舞采纳,获得10
1秒前
1秒前
280完成签到,获得积分10
1秒前
武科完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
FashionBoy应助Ting采纳,获得10
2秒前
M张发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Isla完成签到,获得积分10
4秒前
深情安青应助去追采纳,获得10
4秒前
tonyfountain发布了新的文献求助10
4秒前
4秒前
ddw发布了新的文献求助10
5秒前
5秒前
何玉斌完成签到,获得积分10
5秒前
5秒前
CanLiu发布了新的文献求助30
5秒前
慕青应助武科采纳,获得10
6秒前
研友_ZbP41L发布了新的文献求助10
6秒前
7秒前
淡然绝山发布了新的文献求助10
7秒前
7秒前
7秒前
王兽医完成签到,获得积分10
8秒前
kazila发布了新的文献求助20
8秒前
bkagyin应助苗条平萱采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
Gloria2022完成签到,获得积分10
9秒前
9秒前
十一发布了新的文献求助10
9秒前
叛逆黑洞完成签到 ,获得积分10
10秒前
小美发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609