Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries

快离子导体 电解质 锂(药物) 阳极 电池(电) 储能 能量密度 纳米技术 材料科学 固态 锂电池 商业化 工艺工程 功率(物理) 工程物理 工程类 离子 化学 离子键合 电极 有机化学 物理化学 法学 内分泌学 物理 医学 量子力学 政治学
作者
Junwu Sang,Bin Tang,Kecheng Pan,Yan‐Bing He,Zhen Zhou
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (6): 472-483 被引量:59
标识
DOI:10.1021/accountsmr.2c00229
摘要

ConspectusAll-solid-state lithium batteries have received considerable attention in recent years with the ever-growing demand for efficient and safe energy storage technologies. However, key issues remain unsolved and hinder full-scale commercialization of all-solid-state lithium batteries. Previously, most discussion only focused on how to achieve high energy density from the theoretical perspective. Herein, we analyze the real cases of different kinds of all-solid-state lithium batteries with high energy density to understand the current status, including all-solid-state lithium-ion batteries, all-solid-state lithium metal batteries, and all-solid-state lithium–sulfur batteries. First, we propose a general calculation method to visually compare the above battery systems partly due to no normative parameters for solid-state batteries. After then, we discuss and interpret the key parameters and current situation of all-solid-state lithium batteries. Through the summary and analysis of the frontier, one can find that, although some breakthrough has been made in energy density and areal capacity for solid-state batteries, there are still many aspects to be improved such as power density and rate performance. Therefore, in response to the challenges, we propose possible directions for future development, including the ways to prepare different kinds of solid electrolyte films to reduce the proportion of inactive substances in the cell. The advantages and disadvantages are discussed about three typical solid-state electrolyte films (inorganic solid electrolyte, solid polymer electrolyte, and composite solid electrolyte). In addition, potential candidate anodes with high capacity and cathodes with high voltage and/or high capacity are also discussed in details. The combination of lithium metal anodes with ultrahigh capacity and cathodes with both high capacity and high voltage is the current mainstream direction. However, the interface problems have become the most pressing factor on the application. Therefore, we introduce the origin of interfaces and interphases and discuss how to build a stable electrode/solid electrolyte interface. One thing is clear that artificial solid electrolyte interphases and composite solid electrolytes are effective to obtain stable anode/solid electrolyte interfaces, which can prevent lithium from constantly reacting with solid electrolytes, ensure the uniform lithium deposition and prevent the formation of lithium dendrites. For the cathode/solid electrolyte interface, reasonable composite cathodes, multilayer design, and composite solid electrolytes can optimize the electrode and interface for stable cycles at high voltages and high current densities. Furthermore, the contribution of high-throughput computations and machine learning is introduced in accelerating materials screening and development. Among them, progress has been made in solid electrolytes and artificial solid electrolyte interphases through materials genome engineering and machine learning. Finally, we provide some outlook for the future development. We hope that this Account could help understand the current status and inspire more future breakthrough for all-solid-state lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歆兴欣完成签到 ,获得积分10
刚刚
怡然绾绾关注了科研通微信公众号
1秒前
zaphkiel完成签到 ,获得积分10
2秒前
冯珂完成签到 ,获得积分10
4秒前
7秒前
尘埃之影完成签到,获得积分10
8秒前
8秒前
小明发布了新的文献求助10
10秒前
Honwey发布了新的文献求助10
13秒前
一笑奈何完成签到,获得积分10
13秒前
一不留神完成签到,获得积分10
14秒前
16秒前
逆熵发布了新的文献求助10
18秒前
FKVB_完成签到 ,获得积分10
19秒前
seven完成签到,获得积分10
20秒前
江大橘发布了新的文献求助10
21秒前
田田完成签到 ,获得积分10
22秒前
Honwey完成签到,获得积分20
22秒前
hans完成签到,获得积分10
23秒前
Tuniverse_完成签到 ,获得积分10
26秒前
小明完成签到,获得积分10
27秒前
JamesPei应助Enoch采纳,获得10
27秒前
cavi完成签到,获得积分10
30秒前
依梦完成签到,获得积分10
30秒前
酷波er应助11采纳,获得10
33秒前
彭于晏应助任家军采纳,获得10
35秒前
syxz0628发布了新的文献求助10
36秒前
39秒前
循证小刘发布了新的文献求助40
39秒前
江大橘完成签到,获得积分10
39秒前
兴钬完成签到 ,获得积分10
40秒前
伟@完成签到,获得积分10
41秒前
XiuruLi发布了新的文献求助10
43秒前
xu完成签到,获得积分10
43秒前
积极的南蕾完成签到 ,获得积分10
44秒前
英俊的铭应助落后的嚓茶采纳,获得10
46秒前
默默的甜瓜完成签到,获得积分10
49秒前
XiuruLi完成签到,获得积分10
50秒前
负数发布了新的文献求助10
51秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776119
求助须知:如何正确求助?哪些是违规求助? 3321701
关于积分的说明 10206855
捐赠科研通 3036857
什么是DOI,文献DOI怎么找? 1666469
邀请新用户注册赠送积分活动 797474
科研通“疑难数据库(出版商)”最低求助积分说明 757841