Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries

快离子导体 电解质 锂(药物) 阳极 电池(电) 储能 能量密度 纳米技术 材料科学 固态 锂电池 商业化 工艺工程 功率(物理) 工程物理 工程类 离子 化学 离子键合 电极 有机化学 物理化学 法学 内分泌学 物理 医学 量子力学 政治学
作者
Junwu Sang,Bin Tang,Kecheng Pan,Yan‐Bing He,Zhen Zhou
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (6): 472-483 被引量:65
标识
DOI:10.1021/accountsmr.2c00229
摘要

ConspectusAll-solid-state lithium batteries have received considerable attention in recent years with the ever-growing demand for efficient and safe energy storage technologies. However, key issues remain unsolved and hinder full-scale commercialization of all-solid-state lithium batteries. Previously, most discussion only focused on how to achieve high energy density from the theoretical perspective. Herein, we analyze the real cases of different kinds of all-solid-state lithium batteries with high energy density to understand the current status, including all-solid-state lithium-ion batteries, all-solid-state lithium metal batteries, and all-solid-state lithium–sulfur batteries. First, we propose a general calculation method to visually compare the above battery systems partly due to no normative parameters for solid-state batteries. After then, we discuss and interpret the key parameters and current situation of all-solid-state lithium batteries. Through the summary and analysis of the frontier, one can find that, although some breakthrough has been made in energy density and areal capacity for solid-state batteries, there are still many aspects to be improved such as power density and rate performance. Therefore, in response to the challenges, we propose possible directions for future development, including the ways to prepare different kinds of solid electrolyte films to reduce the proportion of inactive substances in the cell. The advantages and disadvantages are discussed about three typical solid-state electrolyte films (inorganic solid electrolyte, solid polymer electrolyte, and composite solid electrolyte). In addition, potential candidate anodes with high capacity and cathodes with high voltage and/or high capacity are also discussed in details. The combination of lithium metal anodes with ultrahigh capacity and cathodes with both high capacity and high voltage is the current mainstream direction. However, the interface problems have become the most pressing factor on the application. Therefore, we introduce the origin of interfaces and interphases and discuss how to build a stable electrode/solid electrolyte interface. One thing is clear that artificial solid electrolyte interphases and composite solid electrolytes are effective to obtain stable anode/solid electrolyte interfaces, which can prevent lithium from constantly reacting with solid electrolytes, ensure the uniform lithium deposition and prevent the formation of lithium dendrites. For the cathode/solid electrolyte interface, reasonable composite cathodes, multilayer design, and composite solid electrolytes can optimize the electrode and interface for stable cycles at high voltages and high current densities. Furthermore, the contribution of high-throughput computations and machine learning is introduced in accelerating materials screening and development. Among them, progress has been made in solid electrolytes and artificial solid electrolyte interphases through materials genome engineering and machine learning. Finally, we provide some outlook for the future development. We hope that this Account could help understand the current status and inspire more future breakthrough for all-solid-state lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ariel发布了新的文献求助10
2秒前
完美世界应助哈哈采纳,获得10
3秒前
拼搏慕儿完成签到 ,获得积分10
4秒前
油辣椒发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
7秒前
科研乞丐应助娇气的代双采纳,获得40
8秒前
仙女完成签到 ,获得积分10
9秒前
油柑美式发布了新的文献求助10
9秒前
xyg完成签到,获得积分10
10秒前
yongtao发布了新的文献求助10
11秒前
qq完成签到 ,获得积分10
12秒前
小马甲应助xyg采纳,获得10
13秒前
13秒前
俏皮如松完成签到 ,获得积分10
14秒前
15秒前
5114完成签到,获得积分10
16秒前
英吉利25发布了新的文献求助30
19秒前
junyang完成签到,获得积分10
20秒前
feng_qi001发布了新的文献求助10
20秒前
22秒前
张道恒完成签到,获得积分10
23秒前
23秒前
23秒前
嘟嘟完成签到,获得积分10
24秒前
俏皮如松关注了科研通微信公众号
25秒前
哈哈发布了新的文献求助10
28秒前
景初柔发布了新的文献求助10
28秒前
29秒前
29秒前
feng_qi001完成签到,获得积分10
30秒前
栗子完成签到,获得积分10
33秒前
JrPaleo101发布了新的文献求助100
34秒前
量子星尘发布了新的文献求助30
34秒前
是羽曦呀完成签到,获得积分10
36秒前
无花果应助yongtao采纳,获得10
37秒前
39秒前
HH完成签到,获得积分10
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212238
求助须知:如何正确求助?哪些是违规求助? 3746402
关于积分的说明 11788515
捐赠科研通 3414277
什么是DOI,文献DOI怎么找? 1873507
邀请新用户注册赠送积分活动 928006
科研通“疑难数据库(出版商)”最低求助积分说明 837317