Fast prediction of spatial temperature distributions in urban areas with WRF and temporal fusion transformers

天气研究与预报模式 数值天气预报 环境科学 城市热岛 气象学 计算机科学 地理
作者
Hao-Cheng Zhu,Chen Ren,Junqi Wang,Zhuangbo Feng,Fariborz Haghighat,Shi‐Jie Cao
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:103: 105249-105249 被引量:19
标识
DOI:10.1016/j.scs.2024.105249
摘要

Urban Heat Island (UHI) poses a significant challenge to the sustainable development of global cities. It is of great importance to efficiently characterize the spatiotemporal distribution of urban temperatures for UHI mitigation strategies, such as urban ecosystem planning and control. Numerical Weather Prediction (NWP) methods are used to obtain the urban temperature distribution. However, NWP requires significant hardware resources and long computation time. The development of artificial intelligence approaches have been applied in expediting the weather forecasting, yet their forecasting precision remains significantly inferior to that of NWP. Hence, this study aims to propose a hybrid fast prediction model, considering the accuracy of WRF (Weather Research and Forecasting) and efficiency of Temporal Fusion Transformer (TFT) neural networks. By integrating high-precision temperature time series boundaries generated by WRF into TFT, this method (WRF-TFT) is able to realize the rapid predictions of urban temperature distributions (around 15 times faster compare to WRF) while maintaining the physical characteristics of atmospheric dynamics. With this method, we also conducted for future temperature forecast for cities. It is estimated that the temperature can exceed 35 °C more than 12 hours per day in July 2050. This hybrid model facilitates swift acquisition of urban temperature trends, providing a crucial basis for urban risk management and planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林JJ的小可爱完成签到,获得积分10
刚刚
可爱的函函应助GGMJ采纳,获得10
1秒前
1秒前
2秒前
4秒前
4秒前
馥郁发布了新的文献求助10
4秒前
4秒前
zhucebuliaobb完成签到,获得积分10
4秒前
5秒前
种一棵星星完成签到,获得积分10
6秒前
doudou发布了新的文献求助10
6秒前
7秒前
林珍发布了新的文献求助10
7秒前
zhucebuliaobb发布了新的文献求助10
8秒前
9秒前
9秒前
hhh发布了新的文献求助10
10秒前
求索发布了新的文献求助10
10秒前
令狐擎宇发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
就发酵罐发布了新的文献求助10
12秒前
烟花应助冰可乐采纳,获得10
12秒前
13秒前
Lucas应助老实的孤丹采纳,获得10
13秒前
Jason发布了新的文献求助10
13秒前
情怀应助馥郁采纳,获得10
14秒前
领导范儿应助尹小青采纳,获得10
17秒前
wsy发布了新的文献求助10
18秒前
18秒前
王斌完成签到,获得积分10
18秒前
19秒前
沐言发布了新的文献求助10
19秒前
suge完成签到,获得积分10
19秒前
太阳完成签到,获得积分10
21秒前
aowuao完成签到,获得积分10
22秒前
wei完成签到 ,获得积分10
23秒前
老福贵儿应助双夏采纳,获得30
24秒前
25秒前
Susanx发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638365
求助须知:如何正确求助?哪些是违规求助? 4745581
关于积分的说明 15002409
捐赠科研通 4796512
什么是DOI,文献DOI怎么找? 2562691
邀请新用户注册赠送积分活动 1522009
关于科研通互助平台的介绍 1481864