Vision-based strawberry classification using generalized and robust deep networks

过度拟合 人工智能 成熟度 计算机科学 稳健性(进化) 机器学习 模式识别(心理学) 贝叶斯优化 计算机视觉 人工神经网络 成熟 生物化学 化学 食品科学 基因
作者
Hossein Azizi,Ezzatollah Askari Asli‐Ardeh,Ahmad Jahanbakhshi,Mohammad Momeny
出处
期刊:Journal of agriculture and food research [Elsevier BV]
卷期号:15: 100931-100931 被引量:12
标识
DOI:10.1016/j.jafr.2023.100931
摘要

Grading of agricultural products such as fruits and vegetables based on ripeness level and visual defects for the purpose of export, storage and waste control is a process of special importance. Various methods have been used to detect levels of ripeness and the quality of agricultural products, some of which are destructive and some non-destructive. The machine vision system is one of the non-destructive and accurate systems in the field of detecting the quality of agricultural products. In this study, we propose a robust and generalized model via fine-tuning the pre-trained networks for the classification of strawberry fruit. A dataset containing 800 confirmed strawberry images in four classes (unripe, half-ripe, ripe, and damaged) was used. Instead of using fundamental data augmentation (FDA) techniques to prevent overfitting problem and increase the robustness of the model, we employed a novel learning-to-augment strategy (LAS) using noisy images that creates new noisy variant of data via original images. By using the Bayesian optimization algorithm, controllers were used to select the optimal noise parameters of Gaussian and speckle noise to generate new noise images. The best policies of data augmentation based on LAS was used to fine-tune pre-trained cutting-edge models (GoogleNet, ResNet18, and ShuffleNet). The results show that in all the proposed scenarios (i.e. using original data without data augmentation, employing FDA, and applying LAS) the GoogleNet model was able to achieve 96.88 %, 97.50 %, and 98.85 % accuracy, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
孤独黑猫完成签到 ,获得积分10
3秒前
3秒前
负责惊蛰完成签到 ,获得积分10
4秒前
乌托邦发布了新的文献求助10
4秒前
4秒前
西西发布了新的文献求助20
4秒前
Mr兔仙森完成签到,获得积分10
4秒前
清脆语海发布了新的文献求助10
5秒前
帕尼灬尼发布了新的文献求助10
5秒前
6秒前
Marciu33完成签到,获得积分10
7秒前
7秒前
7秒前
香蕉觅云应助cr7采纳,获得10
7秒前
8秒前
辞清发布了新的文献求助10
8秒前
小萌发布了新的文献求助10
8秒前
8秒前
人人人发布了新的文献求助10
8秒前
钢铁之心完成签到,获得积分10
9秒前
10秒前
12秒前
12秒前
Lucas应助yj采纳,获得10
13秒前
闻闻发布了新的文献求助10
13秒前
13秒前
徐rl发布了新的文献求助10
15秒前
zhaoshao完成签到,获得积分10
16秒前
搜集达人应助称心语风采纳,获得10
18秒前
JSJ发布了新的文献求助10
18秒前
19秒前
CodeCraft应助夕夜采纳,获得10
20秒前
20秒前
20秒前
21秒前
HR112应助科研通管家采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949030
求助须知:如何正确求助?哪些是违规求助? 3494455
关于积分的说明 11072385
捐赠科研通 3225115
什么是DOI,文献DOI怎么找? 1782851
邀请新用户注册赠送积分活动 867197
科研通“疑难数据库(出版商)”最低求助积分说明 800671