Medical image fusion based on machine learning for health diagnosis and monitoring of colorectal cancer

计算机科学 人工智能 阶段(地层学) 计算机技术 医学诊断 医学影像学 结直肠癌 成像技术 图像融合 图像处理 医学物理学 机器学习 医学 癌症 放射科 多媒体 图像(数学) 内科学 古生物学 生物
作者
Peng Yifeng,Haijun Deng
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12880-024-01207-6
摘要

Abstract With the rapid development of medical imaging technology and computer technology, the medical imaging artificial intelligence of computer-aided diagnosis based on machine learning has become an important part of modern medical diagnosis. With the application of medical image security technology, people realize that the difficulty of its development is the inherent defect of advanced image processing technology. This paper introduces the background of colorectal cancer diagnosis and monitoring, and then carries out academic research on the medical imaging artificial intelligence of colorectal cancer diagnosis and monitoring and machine learning, and finally summarizes it with the advanced computational intelligence system for the application of safe medical imaging.In the experimental part, this paper wants to carry out the staging preparation stage. It was concluded that the staging preparation stage of group Y was higher than that of group X and the difference was statistically significant. Then the overall accuracy rate of multimodal medical image fusion was 69.5% through pathological staging comparison. Finally, the diagnostic rate, the number of patients with effective treatment and satisfaction were analyzed. Finally, the average diagnostic rate of the new diagnosis method was 8.75% higher than that of the traditional diagnosis method. With the development of computer science and technology, the application field was expanding constantly. Computer aided diagnosis technology combining computer and medical images has become a research hotspot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Reo发布了新的文献求助10
2秒前
揚Young完成签到,获得积分10
2秒前
orixero应助zzy采纳,获得10
2秒前
卡尔发布了新的文献求助10
3秒前
充电宝应助freshfish1017采纳,获得10
4秒前
无奈的萍发布了新的文献求助10
6秒前
ddli发布了新的文献求助10
6秒前
三跳完成签到 ,获得积分10
7秒前
凉风送信完成签到,获得积分10
8秒前
Lucas应助Hana采纳,获得10
9秒前
cyia-应助苗条的酸奶采纳,获得20
9秒前
蒋不惜完成签到,获得积分10
10秒前
Elhsin_Karte完成签到,获得积分20
11秒前
slj完成签到,获得积分10
11秒前
13秒前
14秒前
思源应助isfj采纳,获得10
14秒前
在水一方应助河堤采纳,获得10
15秒前
fang完成签到,获得积分10
15秒前
NexusExplorer应助glittery采纳,获得10
15秒前
葉鳳怡完成签到 ,获得积分10
15秒前
16秒前
automan完成签到,获得积分10
18秒前
fang发布了新的文献求助10
19秒前
19秒前
young发布了新的文献求助10
20秒前
打打应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得30
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
Jeff完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
26秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783262
求助须知:如何正确求助?哪些是违规求助? 3328579
关于积分的说明 10237185
捐赠科研通 3043691
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130