Polymer Nanocomposites with Interpenetrating Gradient Structure Exhibiting Ultrahigh Discharge Efficiency and Energy Density

材料科学 电介质 钛酸钡 聚合物纳米复合材料 复合材料 聚合物 氮化硼 纳米复合材料 陶瓷 光电子学
作者
Jianyong Jiang,Zhonghui Shen,Xingke Cai,Jianfeng Qian,Zhenkang Dan,Yuanhua Lin,Bilu Liu,Ce‐Wen Nan,Long‐Qing Chen,Yang Shen
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:9 (15) 被引量:188
标识
DOI:10.1002/aenm.201803411
摘要

Abstract Poly(vinylidene fluoride) (PVDF) based polymer nanocomposites with high‐permittivity nanofillers exhibit outstanding dielectric energy storage performance due to their high dielectric permittivities and breakdown strength. However, their discharge efficiency is relatively low (usually lower than 70%), which limits their practical applications. Here, polymer nanocomposites with a novel interpenetrating gradient structure are designed and demonstrated by cofilling a PVDF matrix with barium zirconate titanate nanofibers and hexagonal boron nitride nanosheets via modified nonequilibrium processing. The interpenetrating gradient structure is highly effective in breaking the trade‐off between discharge energy density and efficiency of the corresponding nanocomposite, as indicated by the concomitantly enhanced discharge energy density ( U e ≈ 23.4 J cm −3 ) and discharge efficiency (η ≈ 83%). The superior performance is primarily attributed to the rational distribution of nanofillers in the polymer matrix, which raises the height of the potential barrier for charge injection at the dielectric/electrode interface, suppresses electric conduction and contributes to enhanced apparent breakdown strength. Meanwhile, the gradient configuration allows higher volume fraction of high‐permittivity nanofillers without compromising the breakdown strength, leading to higher electric polarization compared with the random configuration. This work provides new opportunities to PVDF‐based polymer nanocomposites with high energy density and discharge efficiency for capacitive energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vousme完成签到 ,获得积分10
刚刚
H-C发布了新的文献求助10
刚刚
刚刚
梅梅完成签到,获得积分10
刚刚
刚刚
1秒前
充电宝应助zxw采纳,获得10
1秒前
一团小煤球完成签到,获得积分10
2秒前
浮云完成签到,获得积分10
2秒前
打打应助jia0采纳,获得10
3秒前
4秒前
王HH发布了新的文献求助10
4秒前
mengdewen发布了新的文献求助10
4秒前
4秒前
iNk举报早上好求助涉嫌违规
5秒前
6秒前
6秒前
7秒前
gnufgg完成签到,获得积分10
7秒前
顾矜应助zhuiyu采纳,获得10
7秒前
zhumeinv发布了新的文献求助10
7秒前
lll完成签到 ,获得积分10
7秒前
7秒前
斯文的鸣凤完成签到,获得积分20
8秒前
H-C完成签到,获得积分10
8秒前
zxw完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
12秒前
12秒前
13秒前
充电宝应助zhumeinv采纳,获得10
13秒前
无奈的老姆完成签到,获得积分10
14秒前
14秒前
刘春林发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240533
求助须知:如何正确求助?哪些是违规求助? 3774287
关于积分的说明 11852627
捐赠科研通 3429539
什么是DOI,文献DOI怎么找? 1882328
邀请新用户注册赠送积分活动 934252
科研通“疑难数据库(出版商)”最低求助积分说明 840928