免疫系统
癌症研究
医学
CD11c公司
肿瘤微环境
髓样
流式细胞术
髓源性抑制细胞
免疫抑制
免疫学
抑制器
内科学
生物
癌症
生物化学
表型
基因
作者
Ailin Li,Hampartsoum B. Barsoumian,Jonathan E. Schoenhals,Mauricio S. Caetano,Xiaohong Wang,Hari Menon,David R. Valdecanas,Sharareh Niknam,Ahmed I. Younes,María Angélica Cortez,James W. Welsh
标识
DOI:10.1016/j.ijrobp.2019.03.022
摘要
The limitation of hypofractionated radiation efficacy is due partly to the immunosuppressive tumor microenvironment. Indoleamine 2,3-dioxygenase 1 (IDO1) is an important regulator of tumor immune suppression. We evaluated the effects of IDO1 in hypofractionated radiation using a Lewis lung carcinoma (LLC) mouse model and tested whether IDO1 inhibition could sensitize those tumors to hypofractionated radiation.Bilateral LLC tumors were established in C57BL/6 mice. Primary tumors were treated with 3 fractions of either 12 Gy or 6 Gy, and the IDO1 inhibitor INCB023843 was given starting on the first day of radiation. Plasma tryptophan and kynurenine levels were quantified by liquid chromatography and tandem mass spectrometry. Tumor-infiltrating immune cells were isolated from the tumors, stained, and quantified by flow cytometry.The combination of INCB023843 and three 12-Gy fractions led to better tumor control and survival than radiation alone; INCB023843 plus three 6-Gy fractions had no benefit. IDO1 expression by tumor-infiltrating immune cells was increased by three 12-Gy doses and inhibited by the addition of INCB023843. Nearly all IDO1+ immune cells were also F4/80+. Percentages of IDO1+F4/80+ immune cells were drastically increased by three 12-Gy fractions and by three 6-Gy fractions, but only INCB023843 combined with three 12-Gy fractions reduced those percentages. IDO1+F4/80+ immune cells were further found to be CD11b+, Gr1-intermediate-expressing, CD206-, and CD11c- (ie, myeloid-derived suppressor cells). Three 12-Gy fractions also increased the percentages of tumor-infiltrating T regulatory cells and CD8+ T cells, but adding INCB023843 did not affect those percentages.In addition to its immune activation effects, hypofractionated radiation induced "rebound immune suppression" in the tumor microenvironment by activating and recruiting IDO1-expressing myeloid-derived suppressor cells in a dose-dependent manner. Adding an IDO1 inhibitor to hypofractionated radiation reduced the percentages of these cells, overcame the immune suppression, and sensitized LLC tumors to hypofractionated radiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI