End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography

肺癌筛查 肺癌 医学 假阳性悖论 计算机断层摄影术 癌症 放射科 医学物理学 人工智能 计算机科学 肿瘤科 内科学
作者
Diego Ardila,Atilla P. Kiraly,Sujeeth Bharadwaj,Bokyung Choi,Joshua J. Reicher,Lily Peng,Daniel Tse,Mozziyar Etemadi,Wenxing Ye,Greg S. Corrado,David P. Naidich,Safal Shetty
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:25 (6): 954-961 被引量:1586
标识
DOI:10.1038/s41591-019-0447-x
摘要

With an estimated 160,000 deaths in 2018, lung cancer is the most common cause of cancer death in the United States1. Lung cancer screening using low-dose computed tomography has been shown to reduce mortality by 20–43% and is now included in US screening guidelines1–6. Existing challenges include inter-grader variability and high false-positive and false-negative rates7–10. We propose a deep learning algorithm that uses a patient’s current and prior computed tomography volumes to predict the risk of lung cancer. Our model achieves a state-of-the-art performance (94.4% area under the curve) on 6,716 National Lung Cancer Screening Trial cases, and performs similarly on an independent clinical validation set of 1,139 cases. We conducted two reader studies. When prior computed tomography imaging was not available, our model outperformed all six radiologists with absolute reductions of 11% in false positives and 5% in false negatives. Where prior computed tomography imaging was available, the model performance was on-par with the same radiologists. This creates an opportunity to optimize the screening process via computer assistance and automation. While the vast majority of patients remain unscreened, we show the potential for deep learning models to increase the accuracy, consistency and adoption of lung cancer screening worldwide. A convolutional neural network performs automated prediction of malignancy risk of pulmonary nodules in chest CT scan volumes and improves accuracy of lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZICU完成签到,获得积分10
刚刚
1秒前
好运来完成签到,获得积分10
1秒前
儒雅的菠萝吹雪完成签到,获得积分10
1秒前
充电宝应助小程同学采纳,获得10
1秒前
依依完成签到,获得积分10
2秒前
2秒前
李健应助Ni采纳,获得10
3秒前
科研小民工应助Luantyi采纳,获得50
3秒前
3秒前
3秒前
Hmbb完成签到,获得积分10
4秒前
帅气的可乐完成签到,获得积分10
4秒前
青山落日秋月春风完成签到,获得积分10
4秒前
繁星与北斗完成签到,获得积分10
4秒前
细致且入微完成签到,获得积分10
4秒前
brian0326发布了新的文献求助10
5秒前
八九发布了新的文献求助10
5秒前
fhw发布了新的文献求助200
5秒前
栗子完成签到 ,获得积分10
6秒前
FashionBoy应助积极的初南采纳,获得10
6秒前
灵巧的导师完成签到,获得积分10
7秒前
斯文败类应助翼静采纳,获得10
7秒前
舒适的紫丝完成签到,获得积分10
7秒前
你说要叫啥完成签到,获得积分10
8秒前
静静子发布了新的文献求助10
8秒前
顺心紫翠完成签到 ,获得积分10
8秒前
在水一方应助麦芒拾音柴采纳,获得10
9秒前
9秒前
Kakoala发布了新的文献求助10
10秒前
鲁鲁完成签到,获得积分10
11秒前
zhx完成签到,获得积分10
11秒前
朱权圣完成签到,获得积分10
12秒前
Laisy完成签到,获得积分10
12秒前
Jack完成签到,获得积分10
13秒前
明理萃完成签到 ,获得积分10
13秒前
13秒前
科研通AI5应助舒适路人采纳,获得10
13秒前
13秒前
Twikky完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785022
求助须知:如何正确求助?哪些是违规求助? 3330388
关于积分的说明 10245821
捐赠科研通 3045781
什么是DOI,文献DOI怎么找? 1671722
邀请新用户注册赠送积分活动 800709
科研通“疑难数据库(出版商)”最低求助积分说明 759621