数学
指数族
广义线性模型
统计
应用数学
对数线性模型
泊松分布
参数统计
指数函数
期限(时间)
线性模型
数学分析
量子力学
物理
出处
期刊:Biometrika
[Oxford University Press]
日期:1993-01-01
卷期号:80 (1): 27-38
被引量:3795
标识
DOI:10.1093/biomet/80.1.27
摘要
It is shown how, in regular parametric problems, the first-order term is removed from the asymptotic bias of maximum likelihood estimates by a suitable modification of the score function. In exponential families with canonical parameterization the effect is to penalize the likelihood by the Jeffreys invariant prior. In binomial logistic models, Poisson log linear models and certain other generalized linear models, the Jeffreys prior penalty function can be imposed in standard regression software using a scheme of iterative adjustments to the data.
科研通智能强力驱动
Strongly Powered by AbleSci AI