Predicting the state of charge and health of batteries using data-driven machine learning

电池(电) 计算机科学 吞吐量 机器学习 荷电状态 人工智能 领域(数学) 国家(计算机科学) 健康状况 无线 算法 功率(物理) 纯数学 物理 电信 量子力学 数学
作者
Man‐Fai Ng,Jin Zhao,Qingyu Yan,G. J. Conduit,Zhi Wei Seh
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (3): 161-170 被引量:548
标识
DOI:10.1038/s42256-020-0156-7
摘要

Machine learning is a specific application of artificial intelligence that allows computers to learn and improve from data and experience via sets of algorithms, without the need for reprogramming. In the field of energy storage, machine learning has recently emerged as a promising modelling approach to determine the state of charge, state of health and remaining useful life of batteries. First, we review the two most studied types of battery models in the literature for battery state prediction: the equivalent circuit and physics-based models. Based on the current limitations of these models, we showcase the promise of various machine learning techniques for fast and accurate battery state prediction. Finally, we highlight the major challenges involved, especially in accurate modelling over length and time, performing in situ calculations and high-throughput data generation. Overall, this work provides insights into real-time, explainable machine learning for battery production, management and optimization in the future. Predicting the properties of batteries, such as their state of charge and remaining lifetime, is crucial for improving battery manufacturing, usage and optimisation for energy storage. The authors discuss how machine learning methods and high-throughput experimentation provide a data-driven approach to this problem, and highlight challenges in building models which provide fast and accurate battery state predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助SZY采纳,获得10
1秒前
KinKrit完成签到 ,获得积分10
1秒前
科目三应助糊涂的丹南采纳,获得10
1秒前
2秒前
包容友灵发布了新的文献求助10
3秒前
科研通AI5应助基尔霍夫采纳,获得10
4秒前
科研通AI5应助星睿采纳,获得10
7秒前
猪猪想要平静的生活完成签到 ,获得积分10
7秒前
樊璐发布了新的文献求助10
8秒前
lioutu完成签到 ,获得积分10
9秒前
9秒前
10秒前
大个应助打工人章鱼哥采纳,获得10
10秒前
10秒前
yqb发布了新的文献求助10
12秒前
CodeCraft应助ssw采纳,获得10
13秒前
aero完成签到 ,获得积分10
13秒前
樊璐完成签到,获得积分10
14秒前
完美世界应助LL采纳,获得10
15秒前
16秒前
17秒前
17秒前
18秒前
19秒前
22秒前
huang发布了新的文献求助10
22秒前
susu完成签到,获得积分10
23秒前
23秒前
葫芦娃发布了新的文献求助30
23秒前
25秒前
情怀应助Math4396采纳,获得10
25秒前
26秒前
26秒前
26秒前
王肖发布了新的文献求助10
28秒前
yinying完成签到,获得积分10
28秒前
华仔应助淡淡从安采纳,获得10
28秒前
29秒前
29秒前
LL发布了新的文献求助10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797740
求助须知:如何正确求助?哪些是违规求助? 3343209
关于积分的说明 10314887
捐赠科研通 3059968
什么是DOI,文献DOI怎么找? 1679185
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150