人工神经网络
函数逼近
领域(数学分析)
分段
区域分解方法
投影(关系代数)
非线性系统
空格(标点符号)
应用数学
数学
函数空间
算法
计算机科学
数学优化
数学分析
人工智能
物理
有限元法
量子力学
操作系统
热力学
作者
Ehsan Kharazmi,Zhongqiang Zhang,George Em Karniadakis
标识
DOI:10.1016/j.cma.2020.113547
摘要
We formulate a general framework for hp-variational physics-informed neural networks (hp-VPINNs) based on the nonlinear approximation of shallow and deep neural networks and hp-refinement via domain decomposition and projection onto the space of high-order polynomials. The trial space is the space of neural network, which is defined globally over the entire computational domain, while the test space contains piecewise polynomials. Specifically in this study, the hp-refinement corresponds to a global approximation with a local learning algorithm that can efficiently localize the network parameter optimization. We demonstrate the advantages of hp-VPINNs in both accuracy and training cost for several numerical examples of function approximation and in solving differential equations.
科研通智能强力驱动
Strongly Powered by AbleSci AI