Digital mapping of GlobalSoilMap soil properties at a broad scale: A review

数字土壤制图 土壤图 表土 环境科学 土壤碳 粮食安全 土壤有机质 土壤测量 土壤水分 人口 环境资源管理 地理 土壤科学 农业 人口学 考古 社会学
作者
Songchao Chen,Dominique Arrouays,Vera Leatitia Mulder,Laura Poggio,Budiman Minasny,Pierre Roudier,Zamir Libohova,Philippe Lagacherie,Zhou Shi,Jacqueline Hannam,Jeroen Meersmans,Anne C Richer-De-Forges,Christian Walter
出处
期刊:Geoderma [Elsevier BV]
卷期号:409: 115567-115567 被引量:333
标识
DOI:10.1016/j.geoderma.2021.115567
摘要

Soils are essential for supporting food production and providing ecosystem services but are under pressure due to population growth, higher food demand, and land use competition. Because of the effort to ensure the sustainable use of soil resources, demand for current, updatable soil information capable of supporting decisions across scales is increasing. Digital soil mapping (DSM) addresses the drawbacks of conventional soil mapping and has been increasingly used for delivering soil information in a time- and cost-efficient manner with higher spatial resolution, better map accuracy, and quantified uncertainty estimates. We reviewed 244 articles published between January 2003 and July 2021 and then summarised the progress in broad-scale (spatial extent >10,000 km2) DSM, focusing on the 12 mandatory soil properties for GlobalSoilMap. We observed that DSM publications continued to increase exponentially; however, the majority (74.6%) focused on applications rather than methodology development. China, France, Australia, and the United States were the most active countries, and Africa and South America lacked country-based DSM products. Approximately 78% of articles focused on mapping soil organic matter/carbon content and soil organic carbon stocks because of their significant role in food security and climate regulation. Half the articles focused on soil information in topsoil only (<30 cm), and studies on deep soil (100–200 cm) were less represented (21.7%). Relief, organisms, and climate were the three most frequently used environmental covariates in DSM. Nonlinear models (i.e. machine learning) have been increasingly used in DSM for their capacity to manage complex interactions between soil information and environmental covariates. Soil pH was the best predicted soil property (average R2 of 0.60, 0.63, and 0.56 at 0–30, 30–100, and 100–200 cm). Other relatively well-predicted soil properties were clay, silt, sand, soil organic carbon (SOC), soil organic matter (SOM), SOC stocks, and bulk density, and coarse fragments and soil depth were poorly predicted (R2 < 0.28). In addition, decreasing model performance with deeper depth intervals was found for most soil properties. Further research should pursue rescuing legacy data, sampling new data guided by well-designed sampling schemas, collecting representative environmental covariates, improving the performance and interpretability of advanced spatial predictive models, relating performance indicators such as accuracy and precision to cost-benefit and risk assessment analysis for improving decision support; moving from static DSM to dynamic DSM; and providing high-quality, fine-resolution digital soil maps to address global challenges related to soil resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的面包完成签到 ,获得积分10
1秒前
热狗完成签到 ,获得积分10
3秒前
RRR完成签到,获得积分10
3秒前
4秒前
rrrick完成签到,获得积分10
6秒前
一直很安静完成签到,获得积分10
6秒前
温暖宛筠完成签到,获得积分10
9秒前
球球了发布了新的文献求助10
10秒前
栀璃鸳挽完成签到,获得积分10
13秒前
wwwteng呀完成签到,获得积分10
13秒前
可爱的函函应助hai采纳,获得10
16秒前
芋圆完成签到 ,获得积分10
18秒前
八九完成签到,获得积分10
19秒前
19秒前
cc完成签到 ,获得积分10
22秒前
23秒前
heolmes完成签到,获得积分10
23秒前
车灵波完成签到 ,获得积分10
24秒前
小野狼完成签到,获得积分10
25秒前
米缸完成签到,获得积分10
27秒前
lanlan完成签到,获得积分10
28秒前
小月986完成签到,获得积分10
28秒前
hai发布了新的文献求助10
30秒前
31秒前
不吃芹菜完成签到,获得积分10
33秒前
如意的尔蝶完成签到,获得积分10
34秒前
fqk完成签到,获得积分10
36秒前
灰鸽舞完成签到 ,获得积分10
37秒前
清秀送终发布了新的文献求助10
37秒前
负责紊完成签到,获得积分10
38秒前
ma完成签到,获得积分10
39秒前
Jasper应助张世瑞采纳,获得10
39秒前
Akim应助sdl采纳,获得10
40秒前
好事成双完成签到,获得积分10
40秒前
一苇以航完成签到 ,获得积分10
41秒前
佳期如梦完成签到 ,获得积分10
41秒前
鸭梨很大完成签到 ,获得积分10
41秒前
那一瞬的永恒完成签到,获得积分10
42秒前
42秒前
大山完成签到 ,获得积分10
43秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541332
捐赠科研通 3106253
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774313