An Integrated CNN Model for Reconstructing and Predicting Land Use/Cover Change: A Case Study of the Baicheng Area, Northeast China

计算机科学 土地覆盖 土地利用 卷积神经网络 背景(考古学) 比例(比率) 深度学习 遥感 领域(数学) 机器学习 数据挖掘 地图学 地理 数学 工程类 土木工程 考古 纯数学
作者
Yubo Zhang,Jiuchun Yang,Dongyan Wang,Jing Wang,Lingxue Yu,Fengqin Yan,Liping Chang,Shuwen Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (23): 4846-4846 被引量:10
标识
DOI:10.3390/rs13234846
摘要

Land use and land cover change (LUCC) modeling has continuously been a major research theme in the field of land system science, which interprets the causes and consequences of land use dynamics. In particular, models that can obtain long-term land use data with high precision are of great value in research on global environmental change and climate impact, as land use data are important model input parameters for evaluating the effect of human activity on nature. However, the accuracy of existing reconstruction and prediction models is inadequate. In this context, this study proposes an integrated convolutional neural network (CNN) LUCC reconstruction and prediction model (CLRPM), which meets the demand for fine-scale LUCC reconstruction and prediction. This model applies the deep learning method, which far exceeds the performance of traditional machine learning methods, and uses CNN to extract spatial features and provide greater proximity information. Taking Baicheng city in Northeast China as an example, we verify that CLRPM achieved high-precision annual LUCC reconstruction and prediction, with an overall accuracy rate 9.38% higher than that of the existing models. Additionally, the error rate was reduced by 49.5%. Moreover, this model can perform multilevel LUCC classification category reconstructions and predictions. This study casts light on LUCC models within the high-precision and fine-grained LUCC categories, which will aid LUCC analyses and help decision-makers better understand complex land-use systems and develop better land management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
钼yanghua应助科研废物采纳,获得10
刚刚
TOBET发布了新的文献求助20
1秒前
JamesPei应助悦耳的小夏采纳,获得10
1秒前
StonyinSICAU发布了新的文献求助10
2秒前
唐萧完成签到,获得积分10
2秒前
IIII完成签到,获得积分10
3秒前
祎薇应助asdfqwer采纳,获得10
3秒前
4秒前
火星上的以蓝完成签到,获得积分10
4秒前
4秒前
小马甲应助lanlan采纳,获得10
5秒前
5秒前
Elaine发布了新的文献求助10
5秒前
香菜完成签到,获得积分10
6秒前
6秒前
6秒前
Young发布了新的文献求助10
6秒前
烂漫的沛菡完成签到 ,获得积分10
7秒前
Leigh完成签到,获得积分10
7秒前
7秒前
tRNA完成签到,获得积分10
7秒前
饭饭完成签到 ,获得积分10
8秒前
夹谷蕈完成签到 ,获得积分10
8秒前
heli发布了新的文献求助10
8秒前
整齐的豆芽完成签到,获得积分10
9秒前
慕青应助高木同学采纳,获得10
9秒前
10秒前
科研通AI5应助昏睡的汉堡采纳,获得10
11秒前
许甜甜鸭应助自觉紫安采纳,获得10
11秒前
zp123456发布了新的文献求助20
11秒前
TGX发布了新的文献求助10
11秒前
xin完成签到,获得积分10
11秒前
无缺完成签到,获得积分10
12秒前
12秒前
招财不肥发布了新的文献求助10
13秒前
13秒前
丘比特应助欣喜的诗筠采纳,获得10
13秒前
14秒前
zz发布了新的文献求助10
15秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828418
求助须知:如何正确求助?哪些是违规求助? 3370761
关于积分的说明 10464797
捐赠科研通 3090653
什么是DOI,文献DOI怎么找? 1700487
邀请新用户注册赠送积分活动 817859
科研通“疑难数据库(出版商)”最低求助积分说明 770566