Diameter distribution estimation with laser scanning based multisource single tree inventory

点云 树(集合论) 胸径 森林资源清查 均方误差 激光扫描 遥感 数学 计算机科学 统计 森林经营 人工智能 地理 林业 激光器 数学分析 物理 光学
作者
Ville Kankare,Xinlian Liang,Mikko Vastaranta,Xiaowei Yu,Markus Holopainen,Juha Hyyppä
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:108: 161-171 被引量:81
标识
DOI:10.1016/j.isprsjprs.2015.07.007
摘要

Tree detection and tree species recognition are bottlenecks of the airborne remote sensing-based single tree inventories. The effect of these factors in forest attribute estimation can be reduced if airborne measurements are aided with tree mapping information that is collected from the ground. The main objective here was to demonstrate the use of terrestrial laser scanning-derived (TLS) tree maps in aiding airborne laser scanning-based (ALS) single tree inventory (multisource single tree inventory, MS-STI) and its capability in predicting diameter distribution in various forest conditions. Automatic measurement of TLS point clouds provided the tree maps and the required reference information from the tree attributes. The study area was located in Evo, Finland, and the reference data was acquired from 27 different sample plots with varying forest conditions. The workflow of MS-STI included: (1) creation of automatic tree map from TLS point clouds, (2) automatic diameter at breast height (DBH) measurement from TLS point clouds, (3) individual tree detection (ITD) based on ALS, (4) matching the ITD segments to the field-measured reference, (5) ALS point cloud metric extraction from the single tree segments and (6) DBH estimation based on the derived metrics. MS-STI proved to be accurate and efficient method for DBH estimation and predicting diameter distribution. The overall accuracy (root mean squared error, RMSE) of the DBH was 36.9 mm. Results showed that the DBH accuracy decreased if the tree density (trees/ha) increased. The highest accuracies were found in old-growth forests (tree densities less than 500 stems/ha). MS-STI resulted in the best accuracies regarding Norway spruce (Picea abies (L.) H. Karst.)-dominated forests (RMSE of 29.9 mm). Diameter distributions were predicted with low error indices, thereby resulting in a good fit compared to the reference. Based on the results, diameter distribution estimation with MS-STI is highly dependent on the forest structure and the accuracy of the tree maps that are used. The most important development step in the future for the MS-STI and automatic measurements of the TLS point cloud is to develop tree species recognition methods and further develop tree detection techniques. The possibility of using MLS or harvester data as a basis for the required tree maps should also be assessed in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵小坤堃发布了新的文献求助10
1秒前
1秒前
Akim应助M95采纳,获得10
1秒前
执着期待完成签到 ,获得积分10
2秒前
旧辞完成签到,获得积分10
4秒前
4秒前
5秒前
肥波完成签到,获得积分10
7秒前
布吉岛完成签到 ,获得积分10
7秒前
optical_magic完成签到,获得积分10
8秒前
小鲨鱼发布了新的文献求助10
8秒前
繁星发布了新的文献求助10
9秒前
着急的青枫应助月军采纳,获得10
10秒前
情怀应助dpcrel采纳,获得10
11秒前
12秒前
15秒前
黄小北完成签到,获得积分10
16秒前
GAAO发布了新的文献求助10
17秒前
vc完成签到,获得积分10
17秒前
天晴色烟雨完成签到,获得积分10
18秒前
18秒前
asdzsx发布了新的文献求助10
20秒前
lianglimay完成签到,获得积分10
22秒前
Lmy发布了新的文献求助10
24秒前
Hour应助倪妮采纳,获得10
26秒前
小茵茵完成签到,获得积分10
27秒前
AlexLee完成签到,获得积分10
27秒前
28秒前
完美世界应助桑祥采纳,获得10
30秒前
淡定完成签到,获得积分10
31秒前
科研通AI6应助姜依涵采纳,获得10
32秒前
得過且過发布了新的文献求助10
34秒前
淡定发布了新的文献求助10
35秒前
虚心的灵煌完成签到,获得积分10
37秒前
天明完成签到,获得积分10
37秒前
科研通AI5应助asdzsx采纳,获得10
37秒前
王霞完成签到 ,获得积分10
38秒前
shjyang完成签到,获得积分0
39秒前
汉堡包应助paper采纳,获得10
41秒前
万能图书馆应助得過且過采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784872
求助须知:如何正确求助?哪些是违规求助? 4111950
关于积分的说明 12721074
捐赠科研通 3836708
什么是DOI,文献DOI怎么找? 2115432
邀请新用户注册赠送积分活动 1138394
关于科研通互助平台的介绍 1024526