材料科学
剥蚀
马朗戈尼效应
融合
激光功率缩放
激光器
沉积(地质)
粒子(生态学)
复合材料
反冲
机械
对流
光学
地质学
哲学
古生物学
物理
海洋学
构造学
量子力学
语言学
沉积物
作者
Saad A. Khairallah,Andrew T. Anderson,Alexander M. Rubenchik,Wayne E. King
标识
DOI:10.1016/j.actamat.2016.02.014
摘要
This study demonstrates the significant effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel. A three-dimensional high fidelity powder-scale model reveals how the strong dynamical melt flow generates pore defects, material spattering (sparking), and denudation zones. The melt track is divided into three sections: a topological depression, a transition and a tail region, each being the location of specific physical effects. The inclusion of laser ray-tracing energy deposition in the powder-scale model improves over traditional volumetric energy deposition. It enables partial particle melting, which impacts pore defects in the denudation zone. Different pore formation mechanisms are observed at the edge of a scan track, at the melt pool bottom (during collapse of the pool depression), and at the end of the melt track (during laser power ramp down). Remedies to these undesirable pores are discussed. The results are validated against the experiments and the sensitivity to laser absorptivity is discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI