Ability boosted knowledge tracing

计算机科学 可解释性 人工智能 模式(遗传算法) 追踪 机器学习 操作系统
作者
Sannyuya Liu,Jianwei Yu,Qing Li,Ruxia Liang,Yunhan Zhang,Xiaoxuan Shen,Jianwen Sun
出处
期刊:Information Sciences [Elsevier BV]
卷期号:596: 567-587 被引量:24
标识
DOI:10.1016/j.ins.2022.02.044
摘要

Knowledge tracing (KT) has become an increasingly relevant problem in intelligent education services, which estimates and traces the degree of learner’s mastery of concepts based on students’ responses to learning resources. The existing mainstream KT models, only attribute learners’ feedback to the degree of knowledge mastery and leave the influence of mental ability factors out of consideration. Although ability is an essential component of the problem-solving process, these knowledge-centered models cause a contradiction between data fitting and rationalization of the model decision-making process, making it difficult to achieve high precision and readability simultaneously. In this paper, an innovative KT model, ability boosted knowledge tracing (ABKT)1 is proposed, which introduces the ability factor into learning feedback attribution to enable the model to analyze the learning process from two perspectives, knowledge and ability, simultaneously. Based on constructive learning theory, continuous matrix factorization (CMF) model is proposed to simulate the knowledge internalization process, following the initiative growth and stationarity principles. In addition, the linear graph latent ability (LGLA) model is proposed to construct learner and item latent ability features, from graph-structured learner interaction data. Then, the knowledge and ability dual-tracing framework is constructed to integrate the knowledge and ability modules. Experimental results on four public databases indicate that the proposed methods perform better than state-of-the-art knowledge tracing algorithms in terms of prediction accuracy in quantitative assessments, displaying some advantages in model interpretability and intelligibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱我嫉妒我完成签到,获得积分10
3秒前
Xiaopei完成签到,获得积分10
4秒前
Chenly完成签到,获得积分10
4秒前
4秒前
4秒前
邹宇发布了新的文献求助10
5秒前
上官若男应助贪玩飞机采纳,获得10
7秒前
拼搏向上发布了新的文献求助10
9秒前
亮子完成签到,获得积分10
9秒前
10秒前
嗯哼完成签到,获得积分10
11秒前
11秒前
抗体药物偶联完成签到,获得积分10
13秒前
热心观众发布了新的文献求助10
14秒前
15秒前
行周完成签到 ,获得积分10
16秒前
李爱国应助Berserker采纳,获得10
16秒前
Jasper应助邹宇采纳,获得10
17秒前
咕咕完成签到,获得积分10
18秒前
113113发布了新的文献求助20
18秒前
18秒前
zyb发布了新的文献求助10
19秒前
19秒前
冷艳大侠完成签到,获得积分10
21秒前
21秒前
22秒前
Yolanda发布了新的文献求助30
23秒前
贪玩飞机发布了新的文献求助10
24秒前
岂识浊醪妙理完成签到,获得积分10
24秒前
不愿透露姓名科研人完成签到 ,获得积分10
25秒前
虚心易云发布了新的文献求助10
25秒前
26秒前
ll完成签到 ,获得积分10
26秒前
26秒前
wsb76完成签到 ,获得积分10
27秒前
28秒前
zyb完成签到,获得积分20
28秒前
燕园发布了新的文献求助10
28秒前
执着夏岚完成签到 ,获得积分10
29秒前
29秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462906
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700312
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770458