Enhanced stress concentration sensitivity of SiCp/Al composite with network architecture

材料科学 复合材料 粒子(生态学) 六面体 多面体 复合数 压力(语言学) 变形(气象学) 几何学 结构工程 有限元法 数学 工程类 海洋学 地质学 哲学 语言学
作者
Xiang Gao,Xuexi Zhang,Mingfang Qian,Aibin Li,Guisong Wang,Lin Geng,Hua‐Xin Peng
出处
期刊:Journal of Composite Materials [SAGE]
卷期号:56 (8): 1165-1174 被引量:10
标识
DOI:10.1177/00219983211072955
摘要

For network architecture design, stress concentration sensitivity caused by particle shape may change, which is rarely studied. Here, the particle shape dependent stress concentration and its effect on the deformation, fracture, and mechanical properties were investigated. Three particle shapes including hexahedron, twenty-six face polyhedron, and sphere were utilized to generate different stress distribution states in the matrix. A numerical composite model showing network architecture (like grain boundary) was applied. A strong correlation between particle shape, stress concentration factor ( R SiC ), and mechanical properties of network composite was built. The particle shape affected the load-bearing capability due to the stress concentration state generated at particle edges. Near the yield point, hexahedron particle wall parallel to the load direction (PaW) was more effective in carrying loads (∼1000 MPa) than that of twenty-six face polyhedron (750–1000 MPa) and sphere (600–1000 MPa) particles. In network composites reinforced by different shape particles, the main crack always initiated in perpendicular network walls (PeW), but propagated along different paths: in Al matrix for hexahedron particle, along macro-interface of SiC/Al–Al for twenty-six face polyhedron particle, and in PeW for sphere particle. Such crack propagation manners contributed to the different elongations of network composites by various particle shapes: sphere > twenty-six face polyhedron > hexahedron particles. Selection of round particle and adjustment of local volume fraction improved elongation with a sacrifice of modulus and strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
浮游应助Tao采纳,获得10
刚刚
谷谷完成签到 ,获得积分10
刚刚
22发布了新的文献求助10
1秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
Eternity2025应助科研通管家采纳,获得20
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小蘑菇应助风趣问蕊采纳,获得10
3秒前
zzz完成签到,获得积分10
6秒前
否定式完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
何文鑫发布了新的文献求助10
10秒前
10秒前
负责惊蛰发布了新的文献求助10
13秒前
Deadlypace完成签到,获得积分10
13秒前
李健应助烟雾镜采纳,获得10
13秒前
13秒前
SOBER发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496844
求助须知:如何正确求助?哪些是违规求助? 4594452
关于积分的说明 14444825
捐赠科研通 4526995
什么是DOI,文献DOI怎么找? 2480606
邀请新用户注册赠送积分活动 1465047
关于科研通互助平台的介绍 1437782