Joint optimization of autoencoder and Self-Supervised Classifier: Anomaly detection of strawberries using hyperspectral imaging

自编码 高光谱成像 人工智能 模式识别(心理学) 异常检测 判别式 计算机科学 分类器(UML) 像素 支持向量机 深度学习
作者
Yisen Liu,Songbin Zhou,Hongmin Wu,Wei Han,Chang Li,Hong Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107007-107007 被引量:40
标识
DOI:10.1016/j.compag.2022.107007
摘要

Developing unsupervised anomaly detection methods for hyperspectral data is of great importance for its applications in quality and safety control. As a frequently-used anomaly detection method, the autoencoder might suffer from the ineffectiveness of extracting essential representations for distinguishing normal and anomalous samples, since it is only trained to minimize the reconstruction error. To improve the performance of the autoencoder, an anomaly detection method for hyperspectral data named SSC-AE is proposed based on the joint learning of autoencoder and self-supervised classifier, and it is evaluated on the detection of quality defects of strawberries, including bruise, fungal infection, and soil contamination. In the proposed architecture, a self-supervised classification task was designed to discriminate the low-dimensional representations of the normal data and the synthetic anomalous data that extracted from the autoencoder, consequently inducing the autoencoder to learn low-dimensional representations with more discriminative power. Experimental results on hyperspectral data of strawberries show that the SSC-AE demonstrated the best anomaly detection performance and its AUC gains compared with the one-dimensional autoencoder, one-dimensional variational autoencoder, two-dimensional autoencoder, one-class support vector machine and self-supervised classifier achieved 29.0%, 21.2%, 55.5%, 28.1% and 24.9%, respectively. It was also found that the locations and shapes of all three types of strawberry anomalies could be successfully visualized by predicting spectra pixel-by-pixel. Furthermore, the algorithm robustness against impure data in the training procedure was investigated by randomly mixing some anomalous samples into the training set. The SSC-AE degraded gracefully and outperformed all the comparison methods at all impurity levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lupoate发布了新的文献求助10
刚刚
踏实的老四完成签到,获得积分10
刚刚
冷酷的海亦完成签到,获得积分10
1秒前
PHDpeng发布了新的文献求助50
2秒前
万能图书馆应助栀初采纳,获得10
2秒前
今后应助合适台灯采纳,获得10
2秒前
三只小熊完成签到,获得积分10
2秒前
2秒前
科研通AI5应助笨笨雪碧采纳,获得10
2秒前
研友_ZGjEKn发布了新的文献求助10
2秒前
平淡的鸿煊完成签到,获得积分10
3秒前
停停走走发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
6秒前
斯文败类应助33采纳,获得10
7秒前
华仔应助停停走走采纳,获得10
8秒前
8秒前
8秒前
9秒前
两清完成签到,获得积分10
9秒前
61完成签到,获得积分10
9秒前
紫瓜发布了新的文献求助10
10秒前
10秒前
Chanelboy完成签到,获得积分10
10秒前
1244081832发布了新的文献求助10
10秒前
11秒前
11秒前
蜉蝣应助小潘同学采纳,获得10
12秒前
12秒前
小黄加油鸭完成签到,获得积分10
13秒前
14秒前
pylchm发布了新的文献求助10
14秒前
Lucas应助zz采纳,获得10
15秒前
布丁果冻发布了新的文献求助30
15秒前
15秒前
mengzhonghunli完成签到,获得积分10
15秒前
毕不可完成签到 ,获得积分10
16秒前
nk完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4510817
求助须知:如何正确求助?哪些是违规求助? 3956839
关于积分的说明 12266632
捐赠科研通 3617772
什么是DOI,文献DOI怎么找? 1990626
邀请新用户注册赠送积分活动 1027018
科研通“疑难数据库(出版商)”最低求助积分说明 918378