已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Anti-Defect engineering toward high luminescent efficiency in whitlockite phosphors

荧光粉 白云石 材料科学 发光 光致发光 量子效率 热稳定性 阴极发光 量子产额 光电子学 纳米技术 化学工程 冶金 光学 物理 工程类 荧光
作者
Xin Pan,Lefu Mei,Yixi Zhuang,Takatoshi Seto,Yuhua Wang,Mikhail E. Plyaskin,Wei Xi,Chao Li,Qingfeng Guo,Libing Liao
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:434: 134652-134652 被引量:33
标识
DOI:10.1016/j.cej.2022.134652
摘要

Lacking an effective strategy to simultaneously address the challenges of quantum efficiency, luminescence intensity and thermal stability has become the key bottleneck for further development and large-scale application of solid-state lighting technology. Herein, inspired by the defect-engineering used in photoelectrocatalytic and photovoltaic materials, we acted in a diametrically opposite way and unprecedentedly proposed an anti-defect engineering strategy to develop high-efficiency phosphors. By constructing a rigid structure and introducing alkali metals M to remove cation vacancy defects, similar to building blocks and jigsaw puzzle, we developed three groups of whitlockite phosphors, namely Ca3-xSrx(PO4)2:Ce3+, Ca3(PO4)2:Ce3+,M and (Ca0.5Sr0.5)3(PO4)2:Ce3+,Na+,Mn2+, and synchronously realized the significant enhancement of photoluminescence intensity (2.46 times), thermal stability (87.92% at 150 °C), cathodoluminescence intensity (3.34 times), quantum yield (from 38.90% to 99.07%). We characterized the defect concentration by positron annihilation technique (PAT), and calculated Debye temperature (ΘD) and simulated the occupation of M according to DFT theory to reveal the improvement mechanism. Some advanced applications were also explored in this work, including warm-white LEDs, plant growth lighting and information security. The anti-defect engineering proposed in this work may contribute to the further development of high-efficiency phosphors for the next-generation smart solid-state lighting technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
半生瓜应助simey采纳,获得10
2秒前
Duktig完成签到,获得积分10
2秒前
3秒前
4秒前
葡萄炖雪梨完成签到 ,获得积分10
4秒前
时尚海安发布了新的文献求助10
6秒前
孤巷的猫完成签到,获得积分10
6秒前
无花果应助CoCo采纳,获得10
8秒前
昵称完成签到,获得积分10
8秒前
曲佳鑫发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
情怀应助淡定寒梅采纳,获得10
13秒前
FashionBoy应助xxl采纳,获得10
13秒前
14秒前
凝凝完成签到,获得积分20
17秒前
simey发布了新的文献求助10
17秒前
17秒前
旷野发布了新的文献求助10
18秒前
allinall发布了新的文献求助10
19秒前
qiu发布了新的文献求助10
19秒前
19秒前
无花果应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI5应助球球采纳,获得10
21秒前
CoCo发布了新的文献求助10
22秒前
善学以致用应助xujiale采纳,获得10
23秒前
今后应助专一的台灯采纳,获得10
25秒前
天真无招完成签到,获得积分10
26秒前
qiu完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
8888发布了新的文献求助10
29秒前
小二郎应助慢慢的地理人采纳,获得10
29秒前
30秒前
xxl发布了新的文献求助10
32秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830132
求助须知:如何正确求助?哪些是违规求助? 3372665
关于积分的说明 10473902
捐赠科研通 3092249
什么是DOI,文献DOI怎么找? 1702017
邀请新用户注册赠送积分活动 818728
科研通“疑难数据库(出版商)”最低求助积分说明 771047