A comparison of supervised classification methods for auditory brainstem response determination.

朴素贝叶斯分类器 人工智能 计算机科学 支持向量机 模式识别(心理学) 机器学习 感知器 多层感知器 相关性(法律) 语音识别 人工神经网络 政治学 法学
作者
Paul McCullagh,Haiying Wang,Huiru Zheng,Gaye Lightbody,H.G. McAllister
出处
期刊:Studies in health technology and informatics [IOS Press]
卷期号:129 (Pt 2): 1289-93 被引量:9
标识
摘要

The ABR is commonly used in the Audiology clinic to determine and quantify hearing loss. Its interpretation is subjective, dependent upon the expertise and experience of the clinical scientist. In this study we investigated the role of machine learning for pattern classification in this domain. We extracted features from the ABRs of 85 test subjects (550 waveforms) and compared four complimentary supervised classification methods: Naïve Bayes, Support Vector Machine Multi-Layer Perceptron and KStar. The Abr dataset comprised both high level and near threshold recordings, labeled as 'response' or 'no response' by the human expert. Features were extracted from single averaged recordings to make the classification process straightforward. A best classification accuracy of 83.4% was obtained using Naïve Bayes and five relevant features extracted from time and wavelet domains. Naïve Bayes also achieved the highest specificity (86.3%). The highest sensitivity (93.1%) was obtained with Support Vector Machine-based classification models. In terms of the overall classification accuracy, four classifiers have shown the consistent, relatively high performance, indicating the relevance of selected features and the feasibility of using machine learning and statistical classification models in the analysis of ABR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llkk发布了新的文献求助10
1秒前
星辰大海应助经冰夏采纳,获得10
2秒前
nan完成签到 ,获得积分10
2秒前
星辰大海应助chen采纳,获得10
2秒前
2秒前
3秒前
4秒前
whyzz完成签到,获得积分10
4秒前
7秒前
兴奋化蛹完成签到,获得积分10
7秒前
7秒前
8秒前
张青馨发布了新的文献求助10
8秒前
漂亮的笑萍完成签到,获得积分10
9秒前
10秒前
10秒前
机械小白发布了新的文献求助50
11秒前
上官若男应助兴奋化蛹采纳,获得10
11秒前
在水一方应助小果子采纳,获得10
11秒前
Jie_huang发布了新的文献求助10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
ZhouYW应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
13秒前
13秒前
经冰夏发布了新的文献求助10
13秒前
15秒前
制冷剂发布了新的文献求助10
16秒前
李晓杰完成签到,获得积分10
16秒前
fbdenrnb发布了新的文献求助10
17秒前
17秒前
17秒前
vain完成签到,获得积分10
18秒前
梦梦发布了新的文献求助10
18秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814481
求助须知:如何正确求助?哪些是违规求助? 3358577
关于积分的说明 10396143
捐赠科研通 3075886
什么是DOI,文献DOI怎么找? 1689593
邀请新用户注册赠送积分活动 813087
科研通“疑难数据库(出版商)”最低求助积分说明 767504