聚类分析
星团(航天器)
系列(地层学)
确定数据集中的群集数
数学
上下界
统计
基础(线性代数)
功能(生物学)
计算机科学
算法
相关聚类
CURE数据聚类算法
古生物学
数学分析
几何学
进化生物学
生物
程序设计语言
作者
Douglas Steinley,Michael J. Brusco
出处
期刊:Psychological Methods
[American Psychological Association]
日期:2011-01-01
卷期号:16 (3): 285-297
被引量:94
摘要
Steinley (2007) provided a lower bound for the sum-of-squares error criterion function used in K-means clustering. In this article, on the basis of the lower bound, the authors propose a method to distinguish between 1 cluster (i.e., a single distribution) versus more than 1 cluster. Additionally, conditional on indicating there are multiple clusters, the procedure is extended to determine the number of clusters. Through a series of simulations, the proposed methodology is shown to outperform several other commonly used procedures for determining both the presence of clusters and their number.
科研通智能强力驱动
Strongly Powered by AbleSci AI