Assessing river water quality using water quality index in Lake Taihu Basin, China

水质 环境科学 浊度 水文学(农业) 硝酸盐 污染 硫酸盐 构造盆地 海洋学 生态学 地质学 化学 生物 有机化学 岩土工程 古生物学
作者
Zhaoshi Wu,Xiaolong Wang,Yuwei Chen,Yongjiu Cai,Jiancai Deng
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:612: 914-922 被引量:554
标识
DOI:10.1016/j.scitotenv.2017.08.293
摘要

Lake Taihu Basin, one of the most developed regions in China, has received considerable attention due to its severe pollution. Our study provides a clear understanding of the water quality in the rivers of Lake Taihu Basin based on basin-scale monitoring and a water quality index (WQI) method. From September 2014 to January 2016, four samplings across four seasons were conducted at 96 sites along main rivers. Fifteen parameters, including water temperature, pH, dissolved oxygen (DO), conductivity, turbidity (tur), permanganate index (CODMn), total nitrogen, total phosphorus, ammonium (NH4-N), nitrite, nitrate (NO3-N), calcium, magnesium, chloride, and sulfate, were measured to calculate the WQI. The average WQI value during our study period was 59.33; consequently, the water quality was considered as generally "moderate". Significant differences in WQI values were detected among the 6 river systems, with better water quality in the Tiaoxi and Nanhe systems. The water quality presented distinct seasonal variation, with the highest WQI values in autumn, followed by spring and summer, and the lowest values in winter. The minimum WQI (WQImin), which was developed based on a stepwise linear regression analysis, consisted of five parameters: NH4-N, CODMn, NO3-N, DO, and tur. The model exhibited excellent performance in representing the water quality in Lake Taihu Basin, especially when weights were fully considered. Our results are beneficial for water quality management and could be used for rapid and low-cost water quality evaluation in Lake Taihu Basin. Additionally, we suggest that weights of environmental parameters should be fully considered in water quality assessments when using the WQImin method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助谢书繁采纳,获得10
2秒前
2秒前
奥黛丽完成签到,获得积分20
3秒前
刘倩发布了新的文献求助10
4秒前
zhang完成签到,获得积分20
4秒前
4秒前
汉堡包应助幸福猎人1991采纳,获得10
4秒前
sschen完成签到,获得积分10
5秒前
zho关闭了zho文献求助
6秒前
传奇3应助牛牛牛采纳,获得10
6秒前
小小li完成签到 ,获得积分10
7秒前
烟花应助晨晨采纳,获得10
8秒前
华仔应助小羊采纳,获得10
8秒前
十字勋章发布了新的文献求助10
8秒前
9秒前
cui完成签到,获得积分10
9秒前
万能图书馆应助刘倩采纳,获得10
10秒前
Orange应助义气的友容采纳,获得10
10秒前
YG123发布了新的文献求助10
11秒前
深情安青应助CY采纳,获得30
11秒前
暖暖完成签到 ,获得积分10
12秒前
加油加油冲冲冲完成签到,获得积分10
12秒前
新羽完成签到,获得积分20
14秒前
拒绝去偏旁应助lym54采纳,获得10
17秒前
17秒前
脑洞疼应助米恩采纳,获得10
18秒前
18秒前
18秒前
19秒前
20秒前
扶桑发布了新的文献求助10
21秒前
右声道完成签到,获得积分10
22秒前
22秒前
曾经阁发布了新的文献求助10
22秒前
牛牛牛发布了新的文献求助10
22秒前
在水一方应助crazy_paper采纳,获得10
23秒前
强健的雪糕关注了科研通微信公众号
24秒前
CY发布了新的文献求助30
25秒前
26秒前
aaa发布了新的文献求助10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835128
求助须知:如何正确求助?哪些是违规求助? 3377624
关于积分的说明 10499544
捐赠科研通 3097120
什么是DOI,文献DOI怎么找? 1705552
邀请新用户注册赠送积分活动 820615
科研通“疑难数据库(出版商)”最低求助积分说明 772142