医学
双氢青蒿素
乳腺癌
癌症研究
奥曲肽
脂质体
体内
药理学
癌细胞
柔红霉素
癌症
肿瘤科
化疗
生长抑素
内科学
免疫学
化学
生物
生物技术
青蒿素
疟疾
恶性疟原虫
生物化学
作者
Rui-Jun Ju,Lan Cheng,Xiaoming Peng,Teng Wang,Cuiqing Li,Xiaoli Song,Shuang Liu,Jianping Chao,Xuetao Li
标识
DOI:10.1080/21691401.2018.1433187
摘要
Tumor invasion is considered a major promoter in the initiation of tumor metastasis, which is supposed to cause most cancer-related deaths. In the present study, octreotide (OCT)-modified daunorubicin plus dihydroartemisinin liposomes were developed and characterized. Evaluations were undertaken on breast cancer MDA-MB-435S cells and MDA-MB-435S xenografts nude mice. The liposomes were ∼100 nm in size with a narrow polydispersity index. In vitro results showed that the OCT-modified daunorubicin plus dihydroartemisinin liposomes could enhance cytotoxicity and cellular uptake by OCT-SSTRs (somatostatin receptors)-mediated active targeting, block on tumor cell wound healing and migration by incorporating dihydroartemisinin. The action mechanism might be related to regulations on E-cadherin, α5β1-integrin, TGF-β1, VEGF and MMP2/9 in breast cancer cells. In vivo, the liposomes displayed a prolonged circulating time, more accumulation in tumor location, and a robust overall antitumor efficacy with no obvious toxicity at the test dose in MDA-MB-435S xenograft mice. In conclusion, the OCT-modified daunorubicin plus dihydroartemisinin liposomes could prevent breast cancer invasion, hence providing a possible strategy for treatment of metastatic breast cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI