Integration of 18FDG-PET Metabolic and Functional Connectomes in the Early Diagnosis and Prognosis of the Alzheimer's Disease

连接组学 神经科学 连接体 神经影像学 脑磁图 疾病 心理学 功能磁共振成像 磁共振成像 功能连接 计算机科学 医学 脑电图 病理 放射科
作者
Antonio G. Zippo,Isabella Castiglioni
出处
期刊:Current Alzheimer Research [Bentham Science Publishers]
卷期号:13 (5): 487-497 被引量:15
标识
DOI:10.2174/1567205013666151116142451
摘要

Alzheimer's Disease (AD) is an invalidating neurodegenerative disorders frequently affecting the aging population. In view of the increase of elderlies, not only in western countries, the related growing societal problems urge for identifying clinical biomarkers in view of potential treatments interfering or blocking the disease course. Among the plenty of anatomo-functional in vivo imaging techniques to inspect brain circuits and physiology, the Magnetic Resonance Imaging (MRI), the functional MRI (fMRI), the Electroencephalography (EEG) and Magnetoencephalography (MEG), have been extensively used for the study of AD, with different achievements and limitations. Eventually, the methodologies summoned by brain connectomics further strengthen the expectations in this field, as shown by recent results obtained with [18F]2-fluoro-2-deoxyglucose 18FDG-PET and fMRI in the prediction of the AD in early stages. However, the inherent complexity of the pathophysiology of the AD suggests that only integrative approaches combining different techniques and methodologies of brain scanning could produce significant breakthroughs in the study of AD. This review proposes a formal framework able to combine brain connectomic data from multimodal acquisitions by means of different in vivo neuroimaging techniques, briefly reporting their different advantages and drawbacks. Indeed, a specialized complex multiplex network, where nodes interact in layers linking the same pair of nodes and each layer reflects a distinct type of brain acquisition, can model the plurality of connectomes recommended in this framework. Keywords: Alzheimer's Disease, fMRI, MRI, PET, EEG, multiplex networks, brain connectomes, high-resolution multimodal scanner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sg253780043发布了新的文献求助200
刚刚
1秒前
SciGPT应助Onism采纳,获得10
1秒前
李佳倩发布了新的文献求助10
1秒前
无花果应助包包酱采纳,获得10
1秒前
1秒前
2秒前
会飞的史迪奇完成签到,获得积分10
2秒前
许甜甜鸭举报幻幻求助涉嫌违规
3秒前
务实寄松发布了新的文献求助10
3秒前
可爱安筠发布了新的文献求助10
3秒前
传奇3应助顺心的傲柔采纳,获得30
4秒前
可靠的代柔完成签到,获得积分20
4秒前
曾经冰露发布了新的文献求助10
4秒前
sweetsbt发布了新的文献求助10
4秒前
称心的猪发布了新的文献求助10
5秒前
锌小子发布了新的文献求助10
5秒前
wzjs发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
6秒前
图图应助Dank1ng采纳,获得10
6秒前
乐正海亦发布了新的文献求助10
7秒前
江国力发布了新的文献求助10
7秒前
领导范儿应助sss采纳,获得10
8秒前
8秒前
阿卓西完成签到,获得积分10
8秒前
良辰应助Rex采纳,获得10
9秒前
9秒前
孤独寻云发布了新的文献求助10
9秒前
jueti发布了新的文献求助200
10秒前
10秒前
10秒前
11秒前
12秒前
科目三应助积极er采纳,获得30
12秒前
共享精神应助Lee采纳,获得10
13秒前
zy关注了科研通微信公众号
13秒前
13秒前
冷静的可愁完成签到,获得积分20
13秒前
怔怔完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831979
求助须知:如何正确求助?哪些是违规求助? 3374351
关于积分的说明 10484424
捐赠科研通 3094186
什么是DOI,文献DOI怎么找? 1703366
邀请新用户注册赠送积分活动 819406
科研通“疑难数据库(出版商)”最低求助积分说明 771488