High-Content Screening for Quantitative Cell Biology

高含量筛选 仿形(计算机编程) 计算生物学 生物 计算机科学 管道(软件) 软件 图像处理 图像分析 人工智能 图像(数学) 数字图像处理 遗传学 细胞 操作系统 程序设计语言
作者
Mojca Mattiazzi Ušaj,Erin B. Styles,Adrian J. Verster,Helena Friesen,Charles Boone,Brenda Andrews
出处
期刊:Trends in Cell Biology [Elsevier BV]
卷期号:26 (8): 598-611 被引量:264
标识
DOI:10.1016/j.tcb.2016.03.008
摘要

HCS combines automated microscopy with quantitative image analysis. Recent hardware advances and innovations in software for automated image analysis now allow researchers to rapidly screen and analyze hundreds of thousands of images. In contrast to early analysis of high-throughput imaging data, which often involved testing for deviation of a single parameter, machine learning, both supervised and unsupervised, allows high-dimensional data analysis. The image analysis pipeline must be designed simultaneously with the development of the biological assay. HCS has been used to identify genes and activities required for a specific biological process and in various disease models, to identify proteome-wide changes in response to chemical or genetic perturbations, and in chemical and genetic profiling. High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米玄完成签到,获得积分10
刚刚
跳跃小伙完成签到 ,获得积分10
2秒前
galen发布了新的文献求助10
2秒前
2秒前
一沙发布了新的文献求助10
3秒前
4秒前
上官若男应助韩永利采纳,获得10
6秒前
7秒前
7秒前
佳佳发布了新的文献求助10
8秒前
纯真若男发布了新的文献求助30
8秒前
8秒前
学术小垃圾完成签到,获得积分20
9秒前
李昕123发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
14秒前
CipherSage应助cloud采纳,获得10
14秒前
善学以致用应助11111采纳,获得10
16秒前
Asahi完成签到 ,获得积分10
16秒前
TORKANOW完成签到,获得积分10
16秒前
18秒前
19秒前
韩永利发布了新的文献求助10
19秒前
杨自强发布了新的文献求助10
19秒前
YY完成签到,获得积分10
19秒前
sb发布了新的文献求助10
20秒前
22秒前
Lucas应助科学家采纳,获得10
23秒前
Singularity发布了新的文献求助10
24秒前
乐乐应助可靠雨文采纳,获得10
25秒前
26秒前
我是老大应助巴巴bow采纳,获得10
26秒前
搜集达人应助Valentina采纳,获得10
27秒前
27秒前
顺利毕业完成签到 ,获得积分10
28秒前
29秒前
哈哈哈完成签到,获得积分10
29秒前
阅读机发布了新的文献求助10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842655
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536643
捐赠科研通 3105227
什么是DOI,文献DOI怎么找? 1710094
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110