Rockburst prediction using artificial intelligence techniques: A review

人工智能 计算机科学 机器学习
作者
Yu Zhang,Kongyi Fang,Manchao He,Dongqiao Liu,J. Wang,Zhi Guo
标识
DOI:10.1016/j.rockmb.2024.100129
摘要

Rockburst is a phenomenon that occurs during mining when there is sudden, violent failure of rock mass in deep underground areas or regions with high tectonic stress. Rockburst disasters endanger the safety of people's lives and property, national energy security, and social interests, so it's very important to accurately predict rockburst. Traditional rockburst prediction has not been able to find an effective prediction method, and the study of the rockburst mechanism is facing a dilemma. With the development of artificial intelligence (AI) techniques in recent years, more and more experts and scholars have begun to introduce AI techniques into the study of the rockburst mechanism. In previous research, several scholars have endeavored to encapsulate the utilization of AI techniques in rockburst prediction. However, either none of these studies exclusively focused on AI techniques, or there were deficiencies in the thoroughness of the synopses provided. Drawing on the advantages of extensive interdisciplinary research and a deep understanding of AI techniques, this paper conducts a comprehensive review of rockburst prediction methods leveraging AI techniques. Firstly, pertinent definitions of rockburst and its associated hazards are introduced. Subsequently, the applications of both traditional prediction methods and those rooted in AI techniques for rockburst prediction are summarized, with emphasis placed on the respective advantages and disadvantages of each approach. Finally, the strengths and weaknesses of prediction methods leveraging AI are consolidated, alongside forecasting future research trends to address existing challenges, while simultaneously proposing directions for improvement to advance the field and meet emerging demands effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
大萨达完成签到,获得积分10
1秒前
于东发布了新的文献求助10
2秒前
ouwenwen完成签到,获得积分10
2秒前
HD应助稳重书双采纳,获得20
3秒前
3秒前
4秒前
xxx发布了新的文献求助30
4秒前
英俊的铭应助素月分辉采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
qq发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
jinxiao发布了新的文献求助10
6秒前
YYy完成签到,获得积分10
7秒前
7秒前
Lucas应助啵子采纳,获得10
8秒前
lalla发布了新的文献求助30
8秒前
SciGPT应助荒天帝采纳,获得10
9秒前
10秒前
10秒前
pdf发布了新的文献求助10
11秒前
科研通AI5应助coco采纳,获得10
12秒前
领导范儿应助robotmaster采纳,获得10
13秒前
钰钰发布了新的文献求助10
14秒前
星空完成签到,获得积分20
14秒前
14秒前
Zpiao发布了新的文献求助10
14秒前
Taishan完成签到,获得积分10
15秒前
lalla完成签到,获得积分20
15秒前
16秒前
大成子发布了新的文献求助20
16秒前
科研通AI2S应助jinxiao采纳,获得10
18秒前
素月分辉发布了新的文献求助10
18秒前
小二郎应助loser采纳,获得10
18秒前
19秒前
小野发布了新的文献求助10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787623
求助须知:如何正确求助?哪些是违规求助? 3333179
关于积分的说明 10260046
捐赠科研通 3048732
什么是DOI,文献DOI怎么找? 1673284
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338