Machine learning-based identification of determinants for rehabilitation success and future healthcare use prevention in patients with high-grade, chronic, nonspecific low back pain: an individual data 7-year follow-up analysis on 154,167 individuals

康复 医学 医疗保健 物理疗法 物理医学与康复 经济 经济增长
作者
Daniel Niederer,Joerg Schiller,David A. Groneberg,Michael Behringer,Bernd Wolfarth,Lars Gabrys
出处
期刊:Pain [Lippincott Williams & Wilkins]
被引量:3
标识
DOI:10.1097/j.pain.0000000000003087
摘要

To individually prescribe rehabilitation contents, it is of importance to know and quantify factors for rehabilitation success and the risk for a future healthcare use. The objective of our multivariable prediction model was to determine factors of rehabilitation success and the risk for a future healthcare use in patients with high-grade, chronic low back pain. We included members of the German pension fund who participated from 2012 to 2019 in multimodal medical rehabilitation with physical and psychological treatment strategies because of low back pain (ICD10:M54.5). Candidate prognostic factors for rehabilitation success and for a future healthcare use were identified using Gradient Boosting Machines and Random Forest algorithms in the R-package caret on a 70% training and a 30% test set. We analysed data from 154,167 patients; 8015 with a second medical rehabilitation measure and 5161 who retired because of low back pain within the study period. The root-mean-square errors ranged between 494 (recurrent rehabilitation) and 523 (retirement) days ( R2 = 0.183-0.229), whereas the prediction accuracy ranged between 81.9% for the prediction of the rehabilitation outcome, and 94.8% for the future healthcare use prediction model. Many modifiable prognostic factors (such as duration of the rehabilitation [inverted u-shaped], type of the rehabilitation, and aftercare measure), nonmodifiable prognostic factors (such as sex and age), and disease-specific factors (such as sick leave days before the rehabilitation [linear positive] together with the pain grades) for rehabilitation success were identified. Inpatient medical rehabilitation programmes (3 weeks) may be more effective in preventing a second rehabilitation measure and/or early retirement because of low back pain compared with outpatient rehabilitation programs. Subsequent implementation of additional exercise programmes, cognitive behavioural aftercare treatment, and following scheduled aftercare are likely to be beneficial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
精明翠曼完成签到,获得积分10
1秒前
1AN完成签到 ,获得积分10
1秒前
qhy完成签到,获得积分10
2秒前
3秒前
月光族发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
6秒前
安诺完成签到,获得积分10
6秒前
落落关注了科研通微信公众号
7秒前
cccxxx完成签到,获得积分10
7秒前
山前发布了新的文献求助10
7秒前
毅逸发布了新的文献求助10
8秒前
8秒前
帅气灯泡发布了新的文献求助50
9秒前
杨廷友发布了新的文献求助10
9秒前
ccc发布了新的文献求助10
9秒前
蓝蓝蓝蓝完成签到,获得积分10
9秒前
李家人应助Duang采纳,获得10
10秒前
在水一方应助奋斗八宝粥采纳,获得10
10秒前
10秒前
科研通AI5应助专注的老太采纳,获得10
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
NexusExplorer应助一只眠羊采纳,获得30
14秒前
orixero应助然然然采纳,获得10
14秒前
科研通AI5应助JJ采纳,获得10
14秒前
Gyrfalcon完成签到 ,获得积分10
14秒前
15秒前
蓝蓝蓝蓝发布了新的文献求助10
15秒前
15秒前
SYLH应助GGb采纳,获得10
17秒前
17秒前
devil发布了新的文献求助10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398332
捐赠科研通 3076344
什么是DOI,文献DOI怎么找? 1689769
邀请新用户注册赠送积分活动 813254
科研通“疑难数据库(出版商)”最低求助积分说明 767599