Generative Adversarial Network–based Noncontrast CT Angiography for Aorta and Carotid Arteries

医学 放射科 颈动脉 主动脉 血管造影 生成对抗网络 人工智能 心脏病学 计算机科学 图像(数学)
作者
Jinhao Lyu,Ying Fu,Mingliang Yang,Yongqin Xiong,Qi Duan,Caohui Duan,Xueyang Wang,Xinbo Xing,Dong Zhang,Jiaji Lin,Chuncai Luo,Xiaoxiao Ma,Xiangbing Bian,Jianxing Hu,C. Li,Jiayu Huang,Wei Zhang,Yue Zhang,Sulian Su,Xin Lou
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:19
标识
DOI:10.1148/radiol.230681
摘要

Background Iodinated contrast agents (ICAs), which are widely used in CT angiography (CTA), may cause adverse effects in humans, and their use is time-consuming and costly. Purpose To develop an ICA-free deep learning imaging model for synthesizing CTA-like images and to assess quantitative and qualitative image quality as well as the diagnostic accuracy of synthetic CTA (Syn-CTA) images. Materials and Methods A generative adversarial network (GAN)-based CTA imaging model was trained, validated, and tested on retrospectively collected pairs of noncontrast CT and CTA images of the neck and abdomen from January 2017 to June 2022, and further validated on an external data set. Syn-CTA image quality was evaluated using quantitative metrics. In addition, two senior radiologists scored the visual quality on a three-point scale (3 = good) and determined the vascular diagnosis. The validity of Syn-CTA images was evaluated by comparing the visual quality scores and diagnostic accuracy of aortic and carotid artery disease between Syn-CTA and real CTA scans. Results CT scans from 1749 patients (median age, 60 years [IQR, 50-68 years]; 1057 male patients) were included in the internal data set: 1137 for training, 400 for validation, and 212 for testing. The external validation set comprised CT scans from 42 patients (median age, 67 years [IQR, 59-74 years]; 37 male patients). Syn-CTA images had high similarity to real CTA images (normalized mean absolute error, 0.011 and 0.013 for internal and external test set, respectively; peak signal-to-noise ratio, 32.07 dB and 31.58 dB; structural similarity, 0.919 and 0.906). The visual quality of Syn-CTA and real CTA images was comparable (internal test set, P = .35; external validation set, P > .99). Syn-CTA showed reasonable to good diagnostic accuracy for vascular diseases (internal test set: accuracy = 94%, macro F1 score = 91%; external validation set: accuracy = 86%, macro F1 score = 83%). Conclusion A GAN-based model that synthesizes neck and abdominal CTA-like images without the use of ICAs shows promise in vascular diagnosis compared with real CTA images. Clinical trial registration no. NCT05471869 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Zhang and Turkbey in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MechaniKer完成签到,获得积分10
刚刚
xiaowutongxue发布了新的文献求助10
刚刚
木沂发布了新的文献求助10
1秒前
随便发布了新的文献求助10
2秒前
2秒前
小二郎应助牛牛牛采纳,获得10
2秒前
科研通AI5应助如意绾绾采纳,获得10
3秒前
llly发布了新的文献求助10
4秒前
6秒前
7秒前
8秒前
10秒前
10秒前
唐平萱完成签到,获得积分10
11秒前
我是老大应助llt采纳,获得10
12秒前
13秒前
温医第一打野完成签到,获得积分10
13秒前
13秒前
zyh完成签到 ,获得积分10
14秒前
chen发布了新的文献求助10
14秒前
14秒前
14秒前
gengxw完成签到,获得积分10
16秒前
16秒前
在水一方应助12345采纳,获得10
16秒前
17秒前
断章发布了新的文献求助10
17秒前
光亮的半山完成签到,获得积分10
19秒前
sy发布了新的文献求助10
19秒前
科研通AI5应助guyan采纳,获得10
19秒前
chen完成签到,获得积分10
20秒前
20秒前
21秒前
犇骉完成签到,获得积分10
21秒前
21秒前
21秒前
7326完成签到,获得积分10
22秒前
赘婿应助CADD_Kelvin采纳,获得10
23秒前
科研通AI5应助笑点低的鸿采纳,获得10
23秒前
俭朴的身影完成签到,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787371
求助须知:如何正确求助?哪些是违规求助? 3332962
关于积分的说明 10258543
捐赠科研通 3048417
什么是DOI,文献DOI怎么找? 1673109
邀请新用户注册赠送积分活动 801623
科研通“疑难数据库(出版商)”最低求助积分说明 760308