Seismic dataset-specific machine learning framework based on pretraining and fine-tuning

计算机科学 人工智能 机器学习
作者
Tariq Alkhalifah,Randy Harsuko
标识
DOI:10.1190/image2022-3749944.1
摘要

Every seismic dataset has its particular characteristics guided mainly by the properties of the subsurface, the data acquisition parameters (the survey), and the often unique noise conditions it experiences. Capturing such characteristics in a neural network model for the efficient application of processing tasks, like denoising, first arrival picking, velocity estimation, and so on, offer a more effective approach to incorporating machine learning in processing than training neural networks for specific tasks that may or may not transfer well to new data. We introduce a framework for seismic processing that allows us to pre-train a neural network to learn the features of a seismic dataset, and then fine-tune that network for any downstream processing task. We take advantage of the fact that most processing tasks utilize the same features embedded in the seismic dataset, and thus, these features can be stored in a common pre-trained network in a self-supervised manner, we refer to as StorSeismic. In this framework, we utilize a Bidirectional Encoder Representations from Transformers (BERT) model to promote pre-training for storing the features of a seismic dataset and then efficiently fine-tune it to adapt to a wide spectrum of seismic processing tasks. We apply this framework on field data, along with synthetically generated data, in the self-supervised pre-training step to store the seismic features. Then, we use the labeled synthetic data to fine-tune the pre-trained network in a supervised fashion to perform various seismic processing tasks, like denoising, low frequency extrapolation, first arrival picking, and velocity estimation, and finally obtain satisfactory inference results on the field data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
深情安青应助妮妮采纳,获得10
1秒前
1秒前
1秒前
所所应助高高的哈密瓜采纳,获得10
2秒前
2秒前
lone623发布了新的文献求助10
3秒前
嘉禾瑶发布了新的文献求助10
3秒前
3秒前
树叶有专攻完成签到,获得积分10
3秒前
好好学习发布了新的文献求助10
4秒前
4秒前
xxn发布了新的文献求助10
5秒前
张子珍完成签到,获得积分20
5秒前
hfguwn发布了新的文献求助10
6秒前
悬殊发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
张子珍发布了新的文献求助10
9秒前
9秒前
Ray发布了新的文献求助10
9秒前
Ava应助嘉禾瑶采纳,获得10
9秒前
9秒前
时尚的八宝粥完成签到,获得积分10
10秒前
10秒前
富婆莱莱发布了新的文献求助10
11秒前
模糊中正应助树有麋鹿采纳,获得30
12秒前
Hello应助Maestro_S采纳,获得30
13秒前
Clay完成签到,获得积分10
14秒前
xgx984发布了新的文献求助10
15秒前
dingjianqiang发布了新的文献求助10
16秒前
16秒前
守序完成签到,获得积分20
17秒前
科研通AI5应助李7采纳,获得10
18秒前
Clay发布了新的文献求助10
18秒前
慕青应助www采纳,获得10
18秒前
柠檬加冰发布了新的文献求助10
19秒前
21秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829329
求助须知:如何正确求助?哪些是违规求助? 3372001
关于积分的说明 10470217
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770830