清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparison of machine learning predictions of subjective poverty in rural China

贫穷 感觉 经济 社会经济地位 随机森林 消费(社会学) 人口经济学 公共经济学 社会经济学 心理学 经济增长 计算机科学 机器学习 社会心理学 社会学 人口学 社会科学 人口
作者
Lucie Maruejols,Hanjie Wang,Qiran Zhao,Yunli Bai,Linxiu Zhang
出处
期刊:China Agricultural Economic Review [Emerald Publishing Limited]
卷期号:15 (2): 379-399 被引量:7
标识
DOI:10.1108/caer-03-2022-0051
摘要

Purpose Despite rising incomes and reduction of extreme poverty, the feeling of being poor remains widespread. Support programs can improve well-being, but they first require identifying who are the households that judge their income is insufficient to meet their basic needs, and what factors are associated with subjective poverty. Design/methodology/approach Households report the income level they judge is sufficient to make ends meet. Then, they are classified as being subjectively poor if their own monetary income is inferior to the level they indicated. Second, the study compares the performance of three machine learning algorithms, the random forest, support vector machines and least absolute shrinkage and selection operator (LASSO) regression, applied to a set of socioeconomic variables to predict subjective poverty status. Findings The random forest generates 85.29% of correct predictions using a range of income and non-income predictors, closely followed by the other two techniques. For the middle-income group, the LASSO regression outperforms random forest. Subjective poverty is mostly associated with monetary income for low-income households. However, a combination of low income, low endowment (land, consumption assets) and unusual large expenditure (medical, gifts) constitutes the key predictors of feeling poor for the middle-income households. Practical implications To reduce the feeling of poverty, policy intervention should continue to focus on increasing incomes. However, improvements in nonincome domains such as health expenditure, education and family demographics can also relieve the feeling of income inadequacy. Methodologically, better performance of either algorithm depends on the data at hand. Originality/value For the first time, the authors show that prediction techniques are reliable to identify subjective poverty prevalence, with example from rural China. The analysis offers specific attention to the modest-income households, who may feel poor but not be identified as such by objective poverty lines, and is relevant when policy-makers seek to address the “next step” after ending extreme poverty. Prediction performance and mechanisms for three machine learning algorithms are compared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TY完成签到 ,获得积分10
5秒前
迅速千愁完成签到 ,获得积分10
6秒前
阿明完成签到,获得积分10
13秒前
juju1234完成签到 ,获得积分10
15秒前
抹茶小汤圆完成签到 ,获得积分10
17秒前
zgzz完成签到 ,获得积分10
20秒前
21秒前
慕容博完成签到,获得积分10
21秒前
非凡梦完成签到,获得积分10
22秒前
yiren完成签到 ,获得积分10
24秒前
帅气的沧海完成签到 ,获得积分10
27秒前
简单发布了新的文献求助10
30秒前
31秒前
科研佟完成签到 ,获得积分10
35秒前
慕容博发布了新的文献求助10
35秒前
学术狂徒劲别完成签到,获得积分10
37秒前
fire完成签到 ,获得积分10
40秒前
悠明夜月完成签到 ,获得积分10
43秒前
MarvelerYB3完成签到,获得积分10
48秒前
Ray完成签到 ,获得积分10
49秒前
开朗的豌豆完成签到 ,获得积分10
50秒前
penzer完成签到 ,获得积分10
51秒前
zhul09完成签到,获得积分10
1分钟前
1分钟前
hb完成签到,获得积分10
1分钟前
FloppyWow发布了新的文献求助10
1分钟前
雍州小铁匠完成签到 ,获得积分10
1分钟前
1分钟前
经卿完成签到 ,获得积分10
1分钟前
三人水明完成签到 ,获得积分10
1分钟前
多边形完成签到 ,获得积分10
2分钟前
FloppyWow发布了新的文献求助10
2分钟前
李健应助王二采纳,获得10
2分钟前
陈醋塔塔完成签到,获得积分10
2分钟前
2分钟前
FloppyWow发布了新的文献求助10
2分钟前
yindi1991完成签到 ,获得积分10
2分钟前
叶痕TNT完成签到 ,获得积分10
2分钟前
FloppyWow发布了新的文献求助10
2分钟前
曾珍完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300953
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626