Piezoelectric Metamaterial Blood Pressure Sensor

超材料 电压 压电 计算机科学 血流 声学 电子工程 材料科学 人工智能 工程类 物理 光电子学 电气工程 医学 内科学
作者
Abdollah Ahmadpour,Ali K. Yetisen,Savaş Taşoğlu
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:5 (6): 3280-3290 被引量:18
标识
DOI:10.1021/acsaelm.3c00344
摘要

Continuous blood pressure monitoring allows for detecting the early onset of cardiovascular disease and assessing personal health status. Conventional piezoelectric blood pressure monitoring techniques have the ability to sense biosignals due to their good dynamic responses but have significant drawbacks in terms of power consumption, which limits the operation of blood pressure sensors. Although piezoelectric materials can be used to enhance the self-powered blood pressure sensor responses, the structure of the piezoelectric element can be modified to achieve a higher output voltage. Here, a structural study on piezoelectric metamaterials in blood pressure sensors is demonstrated, and output voltages are computed and compared to other architectures. Next, a Bayesian optimization framework is defined to get the optimal design according to the metamaterial design space. Machine learning algorithms were used for applying regression models to a simulated dataset, and a 2D map was visualized for key parameters. Finally, a time-dependent blood pressure was applied to the inner surface of an artery vessel inside a 3D tissue skin model to compare the output voltage for different metamaterials. Results revealed that all types of metamaterials can generate a higher electric potential in comparison to normal square-shaped piezoelectric elements. Bayesian optimization showed that honeycomb metamaterials had the optimal performance in generating output voltage, which was validated according to regression model analysis resulting from machine learning algorithms. The simulation of time-dependent blood pressure in a 3D skin tissue model revealed that the design suggested by the Bayesian optimization process can generate an electric potential more than two times greater than that of a conventional square-shaped piezoelectric element.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JXDYYZK完成签到,获得积分10
3秒前
科研通AI2S应助Jodie采纳,获得10
6秒前
落寞的半仙完成签到,获得积分10
7秒前
沉静的清涟完成签到,获得积分10
8秒前
8秒前
健忘鞋垫完成签到,获得积分10
11秒前
14秒前
jianhua发布了新的文献求助10
15秒前
沉静大有发布了新的文献求助10
16秒前
学渣一枚完成签到,获得积分10
16秒前
17秒前
含糊的画板完成签到,获得积分10
17秒前
18秒前
19秒前
wrx完成签到,获得积分20
19秒前
执意完成签到 ,获得积分10
20秒前
dyd完成签到,获得积分10
21秒前
wrx发布了新的文献求助10
22秒前
jzs完成签到 ,获得积分10
22秒前
Jodie发布了新的文献求助10
25秒前
nqterysc完成签到,获得积分10
26秒前
tyt完成签到 ,获得积分10
26秒前
无辜丹彤完成签到,获得积分10
26秒前
26秒前
科目三应助追梦采纳,获得10
27秒前
兴奋小丸子完成签到,获得积分10
27秒前
zhenzhen完成签到,获得积分10
27秒前
穴居人完成签到,获得积分10
28秒前
Summer完成签到,获得积分10
29秒前
爱听歌的糖豆完成签到,获得积分10
31秒前
Jodie完成签到,获得积分10
31秒前
fth完成签到,获得积分10
32秒前
落寞凌柏发布了新的文献求助10
32秒前
曾建完成签到 ,获得积分10
33秒前
陈补天完成签到 ,获得积分10
33秒前
33秒前
卷大喵完成签到,获得积分10
37秒前
yxy完成签到,获得积分10
38秒前
tivyg'lk完成签到,获得积分10
39秒前
我刷的烧饼贼亮完成签到 ,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226987
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734