亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Piezoelectric Metamaterial Blood Pressure Sensor

超材料 电压 压电 计算机科学 血流 声学 电子工程 材料科学 人工智能 工程类 物理 光电子学 电气工程 医学 内科学
作者
Abdollah Ahmadpour,Ali K. Yetisen,Savaş Taşoğlu
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:5 (6): 3280-3290 被引量:18
标识
DOI:10.1021/acsaelm.3c00344
摘要

Continuous blood pressure monitoring allows for detecting the early onset of cardiovascular disease and assessing personal health status. Conventional piezoelectric blood pressure monitoring techniques have the ability to sense biosignals due to their good dynamic responses but have significant drawbacks in terms of power consumption, which limits the operation of blood pressure sensors. Although piezoelectric materials can be used to enhance the self-powered blood pressure sensor responses, the structure of the piezoelectric element can be modified to achieve a higher output voltage. Here, a structural study on piezoelectric metamaterials in blood pressure sensors is demonstrated, and output voltages are computed and compared to other architectures. Next, a Bayesian optimization framework is defined to get the optimal design according to the metamaterial design space. Machine learning algorithms were used for applying regression models to a simulated dataset, and a 2D map was visualized for key parameters. Finally, a time-dependent blood pressure was applied to the inner surface of an artery vessel inside a 3D tissue skin model to compare the output voltage for different metamaterials. Results revealed that all types of metamaterials can generate a higher electric potential in comparison to normal square-shaped piezoelectric elements. Bayesian optimization showed that honeycomb metamaterials had the optimal performance in generating output voltage, which was validated according to regression model analysis resulting from machine learning algorithms. The simulation of time-dependent blood pressure in a 3D skin tissue model revealed that the design suggested by the Bayesian optimization process can generate an electric potential more than two times greater than that of a conventional square-shaped piezoelectric element.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
jl发布了新的文献求助10
13秒前
jl完成签到,获得积分10
32秒前
贪玩的醉柳完成签到,获得积分10
38秒前
wxy发布了新的文献求助30
44秒前
英姑应助贪玩的醉柳采纳,获得10
46秒前
雪白砖家完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
Angina吴发布了新的文献求助10
1分钟前
Angina吴完成签到,获得积分10
1分钟前
球球子完成签到,获得积分10
1分钟前
1分钟前
李健的小迷弟应助Angina吴采纳,获得10
1分钟前
球球子发布了新的文献求助10
1分钟前
小二郎应助Sience采纳,获得10
1分钟前
1分钟前
Sience发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
汉堡包应助任性的皮皮虾采纳,获得10
2分钟前
Jessica完成签到,获得积分10
3分钟前
3分钟前
3分钟前
闹心发布了新的文献求助10
3分钟前
yuan发布了新的文献求助10
3分钟前
852应助fabricio10采纳,获得10
3分钟前
星辰大海应助yuan采纳,获得10
3分钟前
英姑应助skm采纳,获得10
3分钟前
4分钟前
叶也完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
fabricio10发布了新的文献求助10
5分钟前
鬼笔环肽应助等乙天采纳,获得10
5分钟前
矢量完成签到,获得积分10
5分钟前
6分钟前
淡然绝山发布了新的文献求助10
6分钟前
淡然绝山完成签到,获得积分10
6分钟前
6分钟前
Kevin完成签到 ,获得积分10
6分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148589
求助须知:如何正确求助?哪些是违规求助? 4344898
关于积分的说明 13529950
捐赠科研通 4186981
什么是DOI,文献DOI怎么找? 2295986
邀请新用户注册赠送积分活动 1296393
关于科研通互助平台的介绍 1240265