Managing traffic evacuation with multiclass connected and autonomous vehicles

计算机科学 任务(项目管理) 多类分类 细胞传递模型 模拟 交通拥挤 离散化 实时计算 人工智能 运输工程 工程类 支持向量机 数学 数学分析 系统工程
作者
Jialin Liu,Zheng Liu,Bin Jia,Shiteng Zheng,Hao Ji
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:625: 128985-128985 被引量:5
标识
DOI:10.1016/j.physa.2023.128985
摘要

Connected and autonomous vehicles (CAVs) provide a novel perspective to address challenges of traditional evacuation modes, such as the need for trained human drivers, out-of-control, congestion, and limited road capacity. This paper focuses on managing a multiclass traffic evacuation task of private CAVs and mass-transit CAVs. Firstly, we propose a multiclass cell transmission model with moving bottlenecks to model the multiclass CAVs. In particular, we discretize the road network into a multi-size cell network to capture the speed difference between two types of CAVs. The mass-transit CAVs are treated as moving bottlenecks, which can linearly reduce the road capacity in a certain density range. Secondly, we formulate a system optimum collaborative evacuation model to minimize the evacuation network clearance time or minimize the total travel time of evacuees. Constraints include multiclass fleet size, signal-free intersections, loading multiclass CAVs, and non-holding back. Finally, we conduct numerical experiments to test the collaborative evacuation model. On an evacuation corridor, the results show that our proposed model can capture multiclass traffic dynamics and traffic congestion. In the Sioux-Falls network, we evaluate the evacuation efficiency of multiclass CAVs using the fully mixed approach and the lane-based approach. The results indicate that the evacuation efficiency of using the fully mixed approach may be better than that of using the lane-based approach under certain evacuation demands. The cooperation of multiclass CAVs can transfer congestion and reduce evacuation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jerry发布了新的文献求助10
刚刚
夕寸发布了新的文献求助10
刚刚
周凡淇发布了新的文献求助30
1秒前
eatme完成签到,获得积分10
1秒前
1秒前
1秒前
霸气的湘发布了新的文献求助30
2秒前
susu完成签到 ,获得积分10
2秒前
3秒前
危机的小丸子完成签到 ,获得积分10
3秒前
李健应助七七采纳,获得10
4秒前
波比不菜完成签到,获得积分10
4秒前
情怀应助blacksea采纳,获得10
4秒前
tantan发布了新的文献求助10
4秒前
4秒前
空白发布了新的文献求助10
5秒前
852应助公西翠萱采纳,获得30
5秒前
年轻思山发布了新的文献求助10
5秒前
5秒前
favoury发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
大个应助大E深空采纳,获得30
7秒前
sxm1004发布了新的文献求助10
7秒前
干净的烧鹅完成签到,获得积分10
7秒前
8秒前
老迟到的烟酒僧完成签到,获得积分10
8秒前
kqkqk完成签到,获得积分10
8秒前
灵巧的尔芙完成签到,获得积分20
8秒前
我是老大应助jerry采纳,获得10
9秒前
zffx6发布了新的文献求助10
9秒前
sherry发布了新的文献求助10
10秒前
10秒前
10秒前
cccaicai发布了新的文献求助10
10秒前
波比不菜发布了新的文献求助50
10秒前
11秒前
思源应助loewy采纳,获得10
11秒前
zhangxuhns发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064