Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification

高光谱成像 激光雷达 计算机科学 遥感 变压器 人工智能 模式识别(心理学) 地质学 工程类 电气工程 电压
作者
Le Sun,Xinyu Wang,Yuhui Zheng,Zebin Wu,Liyong Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:24
标识
DOI:10.1109/tgrs.2024.3367374
摘要

The effective combination of hyperspectral image (HSI) and light detection and ranging (LiDAR) data can be utilized for land cover classification. Recently, deep learning-based classification methods, especially those utilizing Transformer networks, have achieved remarkable success. However, deep learning classification methods for multi-source data still encounter various technical challenges, such as the comprehensive utilization of multi-scale information, the lightweight network design, and the efficient fusion strategies for heterogeneous data. To address these challenges, we propose a novel and efficient deep neural network, namely multi-scale 3D-2D mixed CNN feature extraction and multi-source data lightweight attention-free fusion network (M2FNet) based on CNN and Transformer. Through end-to-end training, this network effectively combines heterogeneous information from multiple sources, leading to improved performance in joint classification. Specifically, M2FNet employs a multi-scale 3D-2D mixed CNN design to extract both the spatial-spectral features of HSI and the depth-based elevation features of LiDAR data. Subsequently, the extracted features are fed into a novel encoder comprising a feature enhancement module, designed with mathematical morphology and a dilated convolutional module derived from the self-attention of the conventional Transformer encoder (DConvformer), which plays a crucial role in integrating multi-source information within the network. The well-designed architecture enables the network to acquire multi-scale depth and high-order features, significantly reducing the number of training parameters. Comparative experimental results and ablation studies demonstrate that M2FNet outperforms other advanced methods. The source code is publicly available at https://github.com/cupid6868/M2FNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何谓完成签到 ,获得积分10
刚刚
刚刚
gk发布了新的文献求助10
刚刚
情怀应助小王采纳,获得10
1秒前
sfwrbh发布了新的文献求助10
1秒前
yukunwang完成签到,获得积分10
1秒前
玄武岩完成签到,获得积分10
2秒前
科研小白完成签到,获得积分10
3秒前
搜集达人应助小幸运采纳,获得10
3秒前
简若发布了新的文献求助10
4秒前
4秒前
曰归完成签到,获得积分20
4秒前
kkm发布了新的文献求助10
4秒前
11发布了新的文献求助20
5秒前
sfwrbh完成签到,获得积分10
6秒前
研友_VZG7GZ应助十一玮采纳,获得10
6秒前
灰烬发布了新的文献求助10
7秒前
水之虞完成签到 ,获得积分10
7秒前
8秒前
qwerty完成签到,获得积分10
8秒前
英姑应助WangKaka采纳,获得10
8秒前
8秒前
Sujie发布了新的文献求助10
9秒前
kais完成签到 ,获得积分10
9秒前
雍州小铁匠完成签到 ,获得积分10
10秒前
科研通AI5应助Quincy采纳,获得10
11秒前
科研通AI6应助豆豆采纳,获得10
11秒前
12秒前
Zq完成签到,获得积分10
13秒前
13秒前
14秒前
甜甜完成签到,获得积分20
14秒前
汉堡包应助dduu采纳,获得10
14秒前
14秒前
15秒前
蓝胖子发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703854
求助须知:如何正确求助?哪些是违规求助? 4071125
关于积分的说明 12588699
捐赠科研通 3771729
什么是DOI,文献DOI怎么找? 2083322
邀请新用户注册赠送积分活动 1110535
科研通“疑难数据库(出版商)”最低求助积分说明 988364