亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification

高光谱成像 激光雷达 计算机科学 遥感 变压器 人工智能 模式识别(心理学) 地质学 工程类 电压 电气工程
作者
Le Sun,Xinyu Wang,Yuhui Zheng,Zebin Wu,Liyong Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:24
标识
DOI:10.1109/tgrs.2024.3367374
摘要

The effective combination of hyperspectral image (HSI) and light detection and ranging (LiDAR) data can be utilized for land cover classification. Recently, deep learning-based classification methods, especially those utilizing Transformer networks, have achieved remarkable success. However, deep learning classification methods for multi-source data still encounter various technical challenges, such as the comprehensive utilization of multi-scale information, the lightweight network design, and the efficient fusion strategies for heterogeneous data. To address these challenges, we propose a novel and efficient deep neural network, namely multi-scale 3D-2D mixed CNN feature extraction and multi-source data lightweight attention-free fusion network (M2FNet) based on CNN and Transformer. Through end-to-end training, this network effectively combines heterogeneous information from multiple sources, leading to improved performance in joint classification. Specifically, M2FNet employs a multi-scale 3D-2D mixed CNN design to extract both the spatial-spectral features of HSI and the depth-based elevation features of LiDAR data. Subsequently, the extracted features are fed into a novel encoder comprising a feature enhancement module, designed with mathematical morphology and a dilated convolutional module derived from the self-attention of the conventional Transformer encoder (DConvformer), which plays a crucial role in integrating multi-source information within the network. The well-designed architecture enables the network to acquire multi-scale depth and high-order features, significantly reducing the number of training parameters. Comparative experimental results and ablation studies demonstrate that M2FNet outperforms other advanced methods. The source code is publicly available at https://github.com/cupid6868/M2FNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性半山完成签到 ,获得积分10
14秒前
35秒前
看不了一点文献举报求助违规成功
36秒前
盖亚奇举报求助违规成功
36秒前
Jacky举报求助违规成功
36秒前
36秒前
dxldxl发布了新的文献求助150
57秒前
1分钟前
道天完成签到,获得积分10
1分钟前
龙06发布了新的文献求助30
1分钟前
1分钟前
龙06完成签到,获得积分10
1分钟前
zzz完成签到,获得积分10
1分钟前
看不了一点文献举报求助违规成功
1分钟前
Criminology34举报求助违规成功
1分钟前
GPTea举报求助违规成功
1分钟前
1分钟前
ajing完成签到,获得积分10
1分钟前
a3265640发布了新的文献求助20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
啊湫超爱学习完成签到,获得积分10
2分钟前
2分钟前
Crystal发布了新的文献求助10
2分钟前
坚强的平卉应助高晨焜采纳,获得10
2分钟前
高晨焜完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
ChenLan发布了新的文献求助10
3分钟前
lisa发布了新的文献求助10
3分钟前
kukudou2发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
时间煮雨我煮鱼完成签到,获得积分10
5分钟前
你嵙这个期刊没买完成签到 ,获得积分10
5分钟前
5分钟前
GingerF应助Jsihao采纳,获得50
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407919
求助须知:如何正确求助?哪些是违规求助? 4525355
关于积分的说明 14101684
捐赠科研通 4439241
什么是DOI,文献DOI怎么找? 2436668
邀请新用户注册赠送积分活动 1428645
关于科研通互助平台的介绍 1406737