Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification

高光谱成像 激光雷达 计算机科学 遥感 变压器 人工智能 模式识别(心理学) 地质学 工程类 电气工程 电压
作者
Le Sun,Xinyu Wang,Yuhui Zheng,Zebin Wu,Liyong Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:63
标识
DOI:10.1109/tgrs.2024.3367374
摘要

The effective combination of hyperspectral image (HSI) and light detection and ranging (LiDAR) data can be utilized for land cover classification. Recently, deep learning-based classification methods, especially those utilizing Transformer networks, have achieved remarkable success. However, deep learning classification methods for multi-source data still encounter various technical challenges, such as the comprehensive utilization of multi-scale information, the lightweight network design, and the efficient fusion strategies for heterogeneous data. To address these challenges, we propose a novel and efficient deep neural network, namely multi-scale 3D-2D mixed CNN feature extraction and multi-source data lightweight attention-free fusion network (M2FNet) based on CNN and Transformer. Through end-to-end training, this network effectively combines heterogeneous information from multiple sources, leading to improved performance in joint classification. Specifically, M2FNet employs a multi-scale 3D-2D mixed CNN design to extract both the spatial-spectral features of HSI and the depth-based elevation features of LiDAR data. Subsequently, the extracted features are fed into a novel encoder comprising a feature enhancement module, designed with mathematical morphology and a dilated convolutional module derived from the self-attention of the conventional Transformer encoder (DConvformer), which plays a crucial role in integrating multi-source information within the network. The well-designed architecture enables the network to acquire multi-scale depth and high-order features, significantly reducing the number of training parameters. Comparative experimental results and ablation studies demonstrate that M2FNet outperforms other advanced methods. The source code is publicly available at https://github.com/cupid6868/M2FNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzn完成签到,获得积分10
刚刚
1秒前
方继潘完成签到 ,获得积分10
1秒前
Cytheria发布了新的文献求助10
2秒前
3秒前
ywzwszl发布了新的文献求助10
3秒前
欣慰的千凝完成签到,获得积分20
3秒前
领导范儿应助土豆大王采纳,获得30
5秒前
5秒前
6秒前
落寞访云关注了科研通微信公众号
7秒前
小马甲应助hhh采纳,获得10
7秒前
乐乐应助dakui采纳,获得10
7秒前
科研通AI6.1应助dakui采纳,获得10
7秒前
9秒前
zhanghao完成签到,获得积分10
9秒前
9秒前
9秒前
田様应助抗体药物偶联采纳,获得10
9秒前
tzk完成签到,获得积分10
10秒前
所所应助1111采纳,获得10
10秒前
panpan发布了新的文献求助10
11秒前
yjy123完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
科研通AI6.1应助和谐迎夏采纳,获得10
13秒前
謓言发布了新的文献求助10
13秒前
Tung发布了新的文献求助10
14秒前
14秒前
OVO发布了新的文献求助10
14秒前
天雷和地火完成签到,获得积分10
15秒前
Melody发布了新的文献求助10
15秒前
shihuili发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
zzx396发布了新的文献求助10
19秒前
活泼忆丹发布了新的文献求助10
19秒前
22秒前
YouziBa发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738119
求助须知:如何正确求助?哪些是违规求助? 5375696
关于积分的说明 15337007
捐赠科研通 4881243
什么是DOI,文献DOI怎么找? 2623424
邀请新用户注册赠送积分活动 1572144
关于科研通互助平台的介绍 1528995