Near-frictionless ion transport within triazine framework membranes

化学 离子 电化学 化学工程 化学物理 氧化还原 离子运输机 渗透 纳米技术 材料科学 无机化学 电极 有机化学 物理化学 工程类 生物化学
作者
Peipei Zuo,Chunchun Ye,Zhongren Jiao,Jian Luo,Junkai Fang,Ulrich S. Schubert,Neil B. McKeown,Tianbiao Liu,Zhengjin Yang,Tongwen Xu
出处
期刊:Nature [Springer Nature]
卷期号:617 (7960): 299-305 被引量:290
标识
DOI:10.1038/s41586-023-05888-x
摘要

The enhancement of separation processes and electrochemical technologies such as water electrolysers1,2, fuel cells3,4, redox flow batteries5,6 and ion-capture electrodialysis7 depends on the development of low-resistance and high-selectivity ion-transport membranes. The transport of ions through these membranes depends on the overall energy barriers imposed by the collective interplay of pore architecture and pore-analyte interaction8,9. However, it remains challenging to design efficient, scaleable and low-cost selective ion-transport membranes that provide ion channels for low-energy-barrier transport. Here we pursue a strategy that allows the diffusion limit of ions in water to be approached for large-area, free-standing, synthetic membranes using covalently bonded polymer frameworks with rigidity-confined ion channels. The near-frictionless ion flow is synergistically fulfilled by robust micropore confinement and multi-interaction between ion and membrane, which afford, for instance, a Na+ diffusion coefficient of 1.18 × 10-9 m2 s-1, close to the value in pure water at infinite dilution, and an area-specific membrane resistance as low as 0.17 Ω cm2. We demonstrate highly efficient membranes in rapidly charging aqueous organic redox flow batteries that deliver both high energy efficiency and high-capacity utilization at extremely high current densities (up to 500 mA cm-2), and also that avoid crossover-induced capacity decay. This membrane design concept may be broadly applicable to membranes for a wide range of electrochemical devices and for precise molecular separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰火完成签到,获得积分10
1秒前
Appeach完成签到,获得积分10
1秒前
星星轨迹发布了新的文献求助10
1秒前
zzzz完成签到,获得积分10
3秒前
直率夏烟完成签到,获得积分10
3秒前
3秒前
风清扬发布了新的文献求助10
5秒前
lmd完成签到,获得积分10
5秒前
5秒前
乐乐应助123采纳,获得10
6秒前
wendy关注了科研通微信公众号
6秒前
大龙哥886应助刚子采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
sxun完成签到,获得积分10
8秒前
8秒前
66完成签到,获得积分10
9秒前
10秒前
10秒前
JamesPei应助粗犷的老虎采纳,获得10
10秒前
12秒前
奋斗向南发布了新的文献求助10
13秒前
15秒前
李健应助好运6连采纳,获得10
15秒前
xxxr完成签到,获得积分10
15秒前
熙熙发布了新的文献求助10
16秒前
星辰大海应助又困采纳,获得10
16秒前
17秒前
eric888应助w倾采纳,获得150
17秒前
庄建煌发布了新的文献求助10
17秒前
小新应助阿言采纳,获得10
17秒前
silence完成签到,获得积分10
18秒前
18秒前
祝好发布了新的文献求助10
19秒前
大龙哥886应助称心的幻丝采纳,获得10
20秒前
含糊的白开水完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
ding应助Eureka采纳,获得10
23秒前
大龙哥886应助Dave采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472385
求助须知:如何正确求助?哪些是违规求助? 4574678
关于积分的说明 14347789
捐赠科研通 4502046
什么是DOI,文献DOI怎么找? 2466815
邀请新用户注册赠送积分活动 1454881
关于科研通互助平台的介绍 1429206