化学空间
计算机科学
非线性光学
钥匙(锁)
非线性系统
缩放比例
航程(航空)
二次谐波产生
人工智能
空格(标点符号)
传输(电信)
机器学习
纳米技术
材料科学
药物发现
化学
物理
数学
光学
几何学
量子力学
电信
激光器
生物化学
计算机安全
复合材料
操作系统
作者
Ran An,Hongshan Wang,Congwei Xie,Mengfan Wu,Dongdong Chu,Wenqi Jin,Junjie Li,Shilie Pan,Zhihua Yang
出处
期刊:Small
[Wiley]
日期:2025-02-04
卷期号:21 (11): e2500540-e2500540
被引量:3
标识
DOI:10.1002/smll.202500540
摘要
Abstract The efficient experimental exploration of innovative nonlinear optical materials has long been a challenging task due to the vast chemical space and the lack of suitable theoretical prediction frameworks. Herein, a novel theoretical design paradigm is proposed to accelerate the discovery of novel materials with strong second harmonic generation intensity. This challenge is addressed through several key technologies. 1) A high‐precision machine learning model is proposed on the maximum nonlinear optical dataset. 2) Descriptors information paves the way to systematically offer valuable chemical insights for designing chemical structures. 3) A flexible and fast chemical space construction and exploration method is proposed. Accordingly, a nonlinear optical crystal is successfully synthesized through the constructed “machine to knowledge” theoretical framework. This novel compound exhibits a stronger second‐harmonic generation response and wider optical transmission range. This work introduces novel theoretical design concepts and provides innovative chemical insights into optical materials or other functional materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI