Accelerated offline setup of homogenized microscopic model for multi‐scale analyses using neural network with knowledge transfer

代表性基本卷 计算机科学 均质化(气候) 瓶颈 人工神经网络 有限元法 多尺度建模 比例(比率) 算法 人工智能 结构工程 工程类 生物 物理 生物多样性 计算化学 嵌入式系统 化学 量子力学 生态学
作者
Zhongbo Yuan,Raja Biswas,Leong Hien Poh
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
卷期号:124 (13): 3063-3086 被引量:7
标识
DOI:10.1002/nme.7239
摘要

Abstract The FE computational homogenization method is a predictive multi‐scale method without the need for constitutive assumptions and/or potential function postulates at the macro engineering scale. Instead, the effective micro‐structural responses are extracted directly from a representative volume element (RVE) underlying each macro point. However, the FE method is still computationally too expensive for most practical uses, since the micro‐macro FE coupling is done at each loading step/iteration for the entire domain. To this end, the machine learning method has been utilized in the literature for the offline training of a surrogate model to predict the RVE homogenized response for general loading conditions. In this contribution, the neural network (NN) is incorporated into the macro finite element framework in a non‐intrusive manner. This is termed as the FE‐NN framework, in analogy to the FE method. In general, online simulations in the FE‐NN method is very efficient, with predictions matching closely to those obtained from reference direct numerical simulations (DNS). A bottleneck with the FE‐NN framework, however, is the high computational cost associated with the data generation for offline NN model setup. In this paper, focusing on the FE‐NN multi‐scale framework for non‐linear elastic deformation of heterogeneous materials, a sequential training strategy with knowledge transfer is proposed, to enable an efficient offline microscopic NN model setup. For a given target RVE, we first consider a simplified source RVE, where data can be generated rapidly, for the NN pre‐training of surrogate model. The pre‐trained network parameters are next downloaded to initialize the target NN surrogate model, followed by a fine‐tuning training process, using only a small dataset generated by the computationally expensive high‐fidelity RVE. The efficiency of the proposed sequential learning method over the conventional NN training, as well as, its excellent predictive capability for multi‐scale analyses, are demonstrated for a multi‐phase composite material. The proposed FE‐NN‐KT approach can be implemented easily without complicated pre‐processing procedures, since the data generation only involves the standard extraction of effective responses from RVEs, together with a standard NN architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
吴兰田完成签到,获得积分10
1秒前
1秒前
小青椒应助zzzzz采纳,获得30
1秒前
llll完成签到,获得积分10
2秒前
xzz发布了新的文献求助10
2秒前
2秒前
青衣完成签到 ,获得积分10
2秒前
2秒前
十一发布了新的文献求助10
3秒前
浅陌初心发布了新的文献求助10
3秒前
3秒前
小勉发布了新的文献求助10
4秒前
4秒前
5秒前
shanshan发布了新的文献求助10
5秒前
BowieHuang应助liuarise采纳,获得10
5秒前
慕青应助超帅的开山采纳,获得10
6秒前
万能图书馆应助初年采纳,获得10
6秒前
TAO发布了新的文献求助10
7秒前
嘿嘿发布了新的文献求助10
7秒前
7秒前
zzx1995完成签到,获得积分10
7秒前
Lgy完成签到,获得积分10
7秒前
可爱的函函应助阿鹿采纳,获得10
8秒前
木子发布了新的文献求助10
8秒前
完美世界应助陈功城采纳,获得10
8秒前
943840370发布了新的文献求助10
9秒前
大婷子发布了新的文献求助10
9秒前
9秒前
9秒前
xt_489发布了新的文献求助10
10秒前
11发布了新的文献求助10
10秒前
陈泽显完成签到,获得积分10
10秒前
10秒前
hyr完成签到 ,获得积分10
10秒前
10秒前
10秒前
尧尧完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485