Building machine learning models to identify wood species based on near-infrared spectroscopy

随机森林 支持向量机 人工智能 特征选择 离群值 模式识别(心理学) 化学计量学 主成分分析 计算机科学 朴素贝叶斯分类器 特征提取 机器学习 特征(语言学) 鉴定(生物学) 极限学习机 混淆矩阵 人工神经网络 语言学 哲学 植物 生物
作者
Li Luo,XU Zhao-jun,Na Bin
出处
期刊:Holzforschung [De Gruyter]
卷期号:77 (5): 326-337 被引量:2
标识
DOI:10.1515/hf-2022-0122
摘要

Abstract Efficient and nondestructive technology for identifying wood species facilitates the transition from digital forestry to smart forestry. While near-infrared spectroscopy applied to wood identification is well documented, the detailed mechanisms for chemometrics remain unclear. In this study, twelve wood species were identified by using near-infrared spectroscopy combined with six machine learning algorithms (support vector machine, logistic regression, naïve Bayes, k -nearest neighbors, random forest, and artificial neural network). Above all, isolated forest and local outlier factor were used to detect and exclude outliers. Then feature engineering strategies were developed from three perspectives to process feature matrices: feature selection, feature extraction, and feature selection combined with feature extraction. Next, the learning curve, grid search method, and K -fold cross-validation were used to optimize the model parameters. Finally, the accuracy, operation time, and confusion matrix were used to evaluate the model performance. When the local outlier factor was used to remove outliers and principal component analysis was used to extract features, the support-vector-machine-based wood-species identification model produced the most accurate results, with 98.24% accuracy. These results offer new avenues for constructing automatic wood-identification systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬灵松完成签到,获得积分10
1秒前
汐颜完成签到,获得积分10
1秒前
1秒前
re发布了新的文献求助10
1秒前
Wdd完成签到,获得积分10
1秒前
2秒前
LV完成签到 ,获得积分10
2秒前
lst完成签到,获得积分10
2秒前
hoyden完成签到,获得积分10
2秒前
Lee完成签到,获得积分10
3秒前
3秒前
mawenxing完成签到,获得积分10
3秒前
yaowenjun完成签到,获得积分10
3秒前
畅快芝麻发布了新的文献求助10
3秒前
糟糕的铁锤举报18275412695求助涉嫌违规
3秒前
tu123完成签到,获得积分10
4秒前
会飞的YU完成签到,获得积分10
4秒前
毛毛虫完成签到,获得积分10
6秒前
ddd123完成签到,获得积分10
6秒前
6秒前
齐嘉懿完成签到,获得积分10
6秒前
333完成签到,获得积分10
6秒前
nian完成签到,获得积分10
8秒前
乐乐应助未了采纳,获得10
9秒前
hongliyu98发布了新的文献求助10
9秒前
鼎盛学术给好久不见的求助进行了留言
9秒前
爆米花应助澜生采纳,获得10
10秒前
11秒前
gelinhao完成签到,获得积分10
11秒前
jenningseastera应助lgh采纳,获得10
11秒前
jenningseastera应助lgh采纳,获得10
11秒前
NexusExplorer应助lgh采纳,获得10
12秒前
12秒前
Biohacking发布了新的文献求助10
12秒前
jiaayyin完成签到 ,获得积分10
12秒前
墨白白完成签到,获得积分10
13秒前
13秒前
13秒前
valorb完成签到,获得积分0
14秒前
莫失莫忘完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795803
求助须知:如何正确求助?哪些是违规求助? 3340820
关于积分的说明 10302439
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677679
邀请新用户注册赠送积分活动 805534
科研通“疑难数据库(出版商)”最低求助积分说明 762642