亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Concurrent predictions of tension, compression, and shear characteristics of epoxy using three-network viscoplastic model

粘塑性 环氧树脂 材料科学 剪切(地质) 张力(地质) 复合材料 压缩(物理) 结构工程 本构方程 有限元法 工程类
作者
Siddharth Kumar,Sarthak S. Singh
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:238 (21): 10480-10489
标识
DOI:10.1177/09544062241259611
摘要

Epoxy resin controls the mechanical behavior of fiber-reinforced epoxy composites, which are extensively deployed in the aerospace and automotive industries. For numerical simulations to accurately predict the mechanical deformations of these components under multi-axial loading, matrix characteristics must account for tension, compression, and shear loads at varying strain rates. The existing literature lacks a comprehensive approach to predicting the experimental outcomes across all three loading conditions in a polymer matrix simultaneously using a unified set of viscoelastic or viscoplastic model parameters. In this study, the Three-Network (TN) viscoplastic model was successfully applied to concurrently predict the tension, compression, and shear experimental data of an epoxy resin, published by Littel et al. ( Journal of Aerospace Engg., 2008). The elastic modulus, strain softening-hardening response after yield for tension-compression deformation, and post-yield stress saturation under shear deformation are all accurately predicted by the model at different rates of loading conditions. The predicted and simulated results matched well when the TN viscoplastic model predicted parameters were employed as material property in Abaqus (a commercial finite element software) to simulate the deformation modes. This integrated approach highlights the potential of the TN model in enabling precise predictions for epoxy-based composites, which is crucial for optimizing their performance and reliability in aerospace engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rose完成签到,获得积分10
9秒前
21秒前
不安的靖柔完成签到,获得积分10
25秒前
Bravetwq发布了新的文献求助10
26秒前
宋子虎完成签到 ,获得积分10
28秒前
nenoaowu应助不安的靖柔采纳,获得30
30秒前
李健的小迷弟应助Bravetwq采纳,获得10
36秒前
璨澄完成签到 ,获得积分10
38秒前
追寻微笑完成签到 ,获得积分10
38秒前
阳阳阳完成签到,获得积分10
43秒前
Bravetwq完成签到,获得积分10
50秒前
50秒前
55秒前
英俊的铭应助调皮帆布鞋采纳,获得10
56秒前
典雅问寒应助科研通管家采纳,获得10
1分钟前
lcj2022发布了新的文献求助10
1分钟前
1分钟前
星宇完成签到 ,获得积分10
1分钟前
1分钟前
已知中的未知完成签到 ,获得积分10
1分钟前
我是老大应助朴实的成风采纳,获得30
1分钟前
科研通AI2S应助干净幻竹采纳,获得10
1分钟前
甜蜜发带完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Cino完成签到,获得积分10
1分钟前
广发牛勿完成签到,获得积分10
1分钟前
JamesPei应助chelsea采纳,获得10
1分钟前
广发牛勿发布了新的文献求助10
1分钟前
儒雅的飞槐完成签到,获得积分20
1分钟前
1分钟前
Owen应助闪亮喜之郎采纳,获得20
2分钟前
硕小牛完成签到,获得积分10
2分钟前
2分钟前
2分钟前
搞怪的归尘完成签到,获得积分10
2分钟前
2分钟前
MedicoYang发布了新的文献求助100
2分钟前
2分钟前
chelsea发布了新的文献求助10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843176
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540498
捐赠科研通 3106019
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264